rust-lightning/lightning/src/util/wakers.rs
Matt Corallo 8157c01eab Never store more than one StdWaker per live Future
When an `std::future::Future` is `poll()`ed, we're only supposed to
use the latest `Waker` provided. However, we currently push an
`StdWaker` onto our callback list every time `poll` is called,
waking every `Waker` but also using more and more memory until the
`Future` itself is woken.

Here we fix this by removing any `StdWaker`s stored for a given
`Future` when it is `drop`ped or prior to pushing a new `StdWaker`
onto the list when `poll`ed.

Sadly, the introduction of a `Drop` impl for `Future` means we
can't trivially destructure the struct any longer, causing a few
methods to need to take `Future`s by reference rather than
ownership and `clone` a few `Arc`s.

Fixes #2874
2024-02-15 21:52:06 +00:00

759 lines
28 KiB
Rust

// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Utilities which allow users to block on some future notification from LDK. These are
//! specifically used by [`ChannelManager`] to allow waiting until the [`ChannelManager`] needs to
//! be re-persisted.
//!
//! [`ChannelManager`]: crate::ln::channelmanager::ChannelManager
use alloc::sync::Arc;
use core::mem;
use crate::sync::Mutex;
use crate::prelude::*;
#[cfg(feature = "std")]
use crate::sync::Condvar;
#[cfg(feature = "std")]
use std::time::Duration;
use core::future::Future as StdFuture;
use core::task::{Context, Poll};
use core::pin::Pin;
/// Used to signal to one of many waiters that the condition they're waiting on has happened.
pub(crate) struct Notifier {
notify_pending: Mutex<(bool, Option<Arc<Mutex<FutureState>>>)>,
}
impl Notifier {
pub(crate) fn new() -> Self {
Self {
notify_pending: Mutex::new((false, None)),
}
}
/// Wake waiters, tracking that wake needs to occur even if there are currently no waiters.
pub(crate) fn notify(&self) {
let mut lock = self.notify_pending.lock().unwrap();
if let Some(future_state) = &lock.1 {
if complete_future(future_state) {
lock.1 = None;
return;
}
}
lock.0 = true;
}
/// Gets a [`Future`] that will get woken up with any waiters
pub(crate) fn get_future(&self) -> Future {
let mut lock = self.notify_pending.lock().unwrap();
let mut self_idx = 0;
if let Some(existing_state) = &lock.1 {
let mut locked = existing_state.lock().unwrap();
if locked.callbacks_made {
// If the existing `FutureState` has completed and actually made callbacks,
// consider the notification flag to have been cleared and reset the future state.
mem::drop(locked);
lock.1.take();
lock.0 = false;
} else {
self_idx = locked.next_idx;
locked.next_idx += 1;
}
}
if let Some(existing_state) = &lock.1 {
Future { state: Arc::clone(&existing_state), self_idx }
} else {
let state = Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
std_future_callbacks: Vec::new(),
callbacks_with_state: Vec::new(),
complete: lock.0,
callbacks_made: false,
next_idx: 1,
}));
lock.1 = Some(Arc::clone(&state));
Future { state, self_idx: 0 }
}
}
#[cfg(any(test, feature = "_test_utils"))]
pub fn notify_pending(&self) -> bool {
self.notify_pending.lock().unwrap().0
}
}
macro_rules! define_callback { ($($bounds: path),*) => {
/// A callback which is called when a [`Future`] completes.
///
/// Note that this MUST NOT call back into LDK directly, it must instead schedule actions to be
/// taken later. Rust users should use the [`std::future::Future`] implementation for [`Future`]
/// instead.
///
/// Note that the [`std::future::Future`] implementation may only work for runtimes which schedule
/// futures when they receive a wake, rather than immediately executing them.
pub trait FutureCallback : $($bounds +)* {
/// The method which is called.
fn call(&self);
}
impl<F: Fn() $(+ $bounds)*> FutureCallback for F {
fn call(&self) { (self)(); }
}
} }
#[cfg(feature = "std")]
define_callback!(Send);
#[cfg(not(feature = "std"))]
define_callback!();
pub(crate) struct FutureState {
// `callbacks` count as having woken the users' code (as they go direct to the user), but
// `std_future_callbacks` and `callbacks_with_state` do not (as the first just wakes a future,
// we only count it after another `poll()` and the second wakes a `Sleeper` which handles
// setting `callbacks_made` itself).
callbacks: Vec<Box<dyn FutureCallback>>,
std_future_callbacks: Vec<(usize, StdWaker)>,
callbacks_with_state: Vec<Box<dyn Fn(&Arc<Mutex<FutureState>>) -> () + Send>>,
complete: bool,
callbacks_made: bool,
next_idx: usize,
}
fn complete_future(this: &Arc<Mutex<FutureState>>) -> bool {
let mut state_lock = this.lock().unwrap();
let state = &mut *state_lock;
for callback in state.callbacks.drain(..) {
callback.call();
state.callbacks_made = true;
}
for (_, waker) in state.std_future_callbacks.drain(..) {
waker.0.wake_by_ref();
}
for callback in state.callbacks_with_state.drain(..) {
(callback)(this);
}
state.complete = true;
state.callbacks_made
}
/// A simple future which can complete once, and calls some callback(s) when it does so.
pub struct Future {
state: Arc<Mutex<FutureState>>,
self_idx: usize,
}
impl Future {
/// Registers a callback to be called upon completion of this future. If the future has already
/// completed, the callback will be called immediately.
///
/// This is not exported to bindings users, use the bindings-only `register_callback_fn` instead
pub fn register_callback(&self, callback: Box<dyn FutureCallback>) {
let mut state = self.state.lock().unwrap();
if state.complete {
state.callbacks_made = true;
mem::drop(state);
callback.call();
} else {
state.callbacks.push(callback);
}
}
// C bindings don't (currently) know how to map `Box<dyn Trait>`, and while it could add the
// following wrapper, doing it in the bindings is currently much more work than simply doing it
// here.
/// Registers a callback to be called upon completion of this future. If the future has already
/// completed, the callback will be called immediately.
#[cfg(c_bindings)]
pub fn register_callback_fn<F: 'static + FutureCallback>(&self, callback: F) {
self.register_callback(Box::new(callback));
}
/// Waits until this [`Future`] completes.
#[cfg(feature = "std")]
pub fn wait(&self) {
Sleeper::from_single_future(&self).wait();
}
/// Waits until this [`Future`] completes or the given amount of time has elapsed.
///
/// Returns true if the [`Future`] completed, false if the time elapsed.
#[cfg(feature = "std")]
pub fn wait_timeout(&self, max_wait: Duration) -> bool {
Sleeper::from_single_future(&self).wait_timeout(max_wait)
}
#[cfg(test)]
pub fn poll_is_complete(&self) -> bool {
let mut state = self.state.lock().unwrap();
if state.complete {
state.callbacks_made = true;
true
} else { false }
}
}
impl Drop for Future {
fn drop(&mut self) {
self.state.lock().unwrap().std_future_callbacks.retain(|(idx, _)| *idx != self.self_idx);
}
}
use core::task::Waker;
struct StdWaker(pub Waker);
/// This is not exported to bindings users as Rust Futures aren't usable in language bindings.
impl<'a> StdFuture for Future {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut state = self.state.lock().unwrap();
if state.complete {
state.callbacks_made = true;
Poll::Ready(())
} else {
let waker = cx.waker().clone();
state.std_future_callbacks.retain(|(idx, _)| *idx != self.self_idx);
state.std_future_callbacks.push((self.self_idx, StdWaker(waker)));
Poll::Pending
}
}
}
/// A struct which can be used to select across many [`Future`]s at once without relying on a full
/// async context.
#[cfg(feature = "std")]
pub struct Sleeper {
notifiers: Vec<Arc<Mutex<FutureState>>>,
}
#[cfg(feature = "std")]
impl Sleeper {
/// Constructs a new sleeper from one future, allowing blocking on it.
pub fn from_single_future(future: &Future) -> Self {
Self { notifiers: vec![Arc::clone(&future.state)] }
}
/// Constructs a new sleeper from two futures, allowing blocking on both at once.
// Note that this is the common case - a ChannelManager and ChainMonitor.
pub fn from_two_futures(fut_a: &Future, fut_b: &Future) -> Self {
Self { notifiers: vec![Arc::clone(&fut_a.state), Arc::clone(&fut_b.state)] }
}
/// Constructs a new sleeper on many futures, allowing blocking on all at once.
pub fn new(futures: Vec<Future>) -> Self {
Self { notifiers: futures.into_iter().map(|f| Arc::clone(&f.state)).collect() }
}
/// Prepares to go into a wait loop body, creating a condition variable which we can block on
/// and an `Arc<Mutex<Option<_>>>` which gets set to the waking `Future`'s state prior to the
/// condition variable being woken.
fn setup_wait(&self) -> (Arc<Condvar>, Arc<Mutex<Option<Arc<Mutex<FutureState>>>>>) {
let cv = Arc::new(Condvar::new());
let notified_fut_mtx = Arc::new(Mutex::new(None));
{
for notifier_mtx in self.notifiers.iter() {
let cv_ref = Arc::clone(&cv);
let notified_fut_ref = Arc::clone(&notified_fut_mtx);
let mut notifier = notifier_mtx.lock().unwrap();
if notifier.complete {
*notified_fut_mtx.lock().unwrap() = Some(Arc::clone(&notifier_mtx));
break;
}
notifier.callbacks_with_state.push(Box::new(move |notifier_ref| {
*notified_fut_ref.lock().unwrap() = Some(Arc::clone(notifier_ref));
cv_ref.notify_all();
}));
}
}
(cv, notified_fut_mtx)
}
/// Wait until one of the [`Future`]s registered with this [`Sleeper`] has completed.
pub fn wait(&self) {
let (cv, notified_fut_mtx) = self.setup_wait();
let notified_fut = cv.wait_while(notified_fut_mtx.lock().unwrap(), |fut_opt| fut_opt.is_none())
.unwrap().take().expect("CV wait shouldn't have returned until the notifying future was set");
notified_fut.lock().unwrap().callbacks_made = true;
}
/// Wait until one of the [`Future`]s registered with this [`Sleeper`] has completed or the
/// given amount of time has elapsed. Returns true if a [`Future`] completed, false if the time
/// elapsed.
pub fn wait_timeout(&self, max_wait: Duration) -> bool {
let (cv, notified_fut_mtx) = self.setup_wait();
let notified_fut =
match cv.wait_timeout_while(notified_fut_mtx.lock().unwrap(), max_wait, |fut_opt| fut_opt.is_none()) {
Ok((_, e)) if e.timed_out() => return false,
Ok((mut notified_fut, _)) =>
notified_fut.take().expect("CV wait shouldn't have returned until the notifying future was set"),
Err(_) => panic!("Previous panic while a lock was held led to a lock panic"),
};
notified_fut.lock().unwrap().callbacks_made = true;
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::sync::atomic::{AtomicBool, Ordering};
use core::future::Future as FutureTrait;
use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
#[test]
fn notifier_pre_notified_future() {
// Previously, if we generated a future after a `Notifier` had been notified, the future
// would never complete. This tests this behavior, ensuring the future instead completes
// immediately.
let notifier = Notifier::new();
notifier.notify();
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(callback.load(Ordering::SeqCst));
}
#[test]
fn notifier_future_completes_wake() {
// Previously, if we were only using the `Future` interface to learn when a `Notifier` has
// been notified, we'd never mark the notifier as not-awaiting-notify. This caused the
// `lightning-background-processor` to persist in a tight loop.
let notifier = Notifier::new();
// First check the simple case, ensuring if we get notified a new future isn't woken until
// a second `notify`.
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(!callback.load(Ordering::SeqCst));
notifier.notify();
assert!(callback.load(Ordering::SeqCst));
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(!callback.load(Ordering::SeqCst));
notifier.notify();
assert!(callback.load(Ordering::SeqCst));
// Then check the case where the future is fetched before the notification, but a callback
// is only registered after the `notify`, ensuring that it is still sufficient to ensure we
// don't get an instant-wake when we get a new future.
let future = notifier.get_future();
notifier.notify();
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(callback.load(Ordering::SeqCst));
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(!callback.load(Ordering::SeqCst));
}
#[test]
fn new_future_wipes_notify_bit() {
// Previously, if we were only using the `Future` interface to learn when a `Notifier` has
// been notified, we'd never mark the notifier as not-awaiting-notify if a `Future` is
// fetched after the notify bit has been set.
let notifier = Notifier::new();
notifier.notify();
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(callback.load(Ordering::SeqCst));
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
notifier.get_future().register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(!callback.load(Ordering::SeqCst));
notifier.notify();
assert!(callback.load(Ordering::SeqCst));
}
#[cfg(feature = "std")]
#[test]
fn test_wait_timeout() {
use crate::sync::Arc;
use std::thread;
let persistence_notifier = Arc::new(Notifier::new());
let thread_notifier = Arc::clone(&persistence_notifier);
let exit_thread = Arc::new(AtomicBool::new(false));
let exit_thread_clone = exit_thread.clone();
thread::spawn(move || {
loop {
thread_notifier.notify();
if exit_thread_clone.load(Ordering::SeqCst) {
break
}
}
});
// Check that we can block indefinitely until updates are available.
let _ = persistence_notifier.get_future().wait();
// Check that the Notifier will return after the given duration if updates are
// available.
loop {
if persistence_notifier.get_future().wait_timeout(Duration::from_millis(100)) {
break
}
}
exit_thread.store(true, Ordering::SeqCst);
// Check that the Notifier will return after the given duration even if no updates
// are available.
loop {
if !persistence_notifier.get_future().wait_timeout(Duration::from_millis(100)) {
break
}
}
}
#[cfg(feature = "std")]
#[test]
fn test_state_drops() {
// Previously, there was a leak if a `Notifier` was `drop`ed without ever being notified
// but after having been slept-on. This tests for that leak.
use crate::sync::Arc;
use std::thread;
let notifier_a = Arc::new(Notifier::new());
let notifier_b = Arc::new(Notifier::new());
let thread_notifier_a = Arc::clone(&notifier_a);
let future_a = notifier_a.get_future();
let future_state_a = Arc::downgrade(&future_a.state);
let future_b = notifier_b.get_future();
let future_state_b = Arc::downgrade(&future_b.state);
let join_handle = thread::spawn(move || {
// Let the other thread get to the wait point, then notify it.
std::thread::sleep(Duration::from_millis(50));
thread_notifier_a.notify();
});
// Wait on the other thread to finish its sleep, note that the leak only happened if we
// actually have to sleep here, not if we immediately return.
Sleeper::from_two_futures(&future_a, &future_b).wait();
join_handle.join().unwrap();
// then drop the notifiers and make sure the future states are gone.
mem::drop(notifier_a);
mem::drop(notifier_b);
mem::drop(future_a);
mem::drop(future_b);
assert!(future_state_a.upgrade().is_none() && future_state_b.upgrade().is_none());
}
#[test]
fn test_future_callbacks() {
let future = Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
std_future_callbacks: Vec::new(),
callbacks_with_state: Vec::new(),
complete: false,
callbacks_made: false,
next_idx: 1,
})),
self_idx: 0,
};
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(!callback.load(Ordering::SeqCst));
complete_future(&future.state);
assert!(callback.load(Ordering::SeqCst));
complete_future(&future.state);
}
#[test]
fn test_pre_completed_future_callbacks() {
let future = Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
std_future_callbacks: Vec::new(),
callbacks_with_state: Vec::new(),
complete: false,
callbacks_made: false,
next_idx: 1,
})),
self_idx: 0,
};
complete_future(&future.state);
let callback = Arc::new(AtomicBool::new(false));
let callback_ref = Arc::clone(&callback);
future.register_callback(Box::new(move || assert!(!callback_ref.fetch_or(true, Ordering::SeqCst))));
assert!(callback.load(Ordering::SeqCst));
assert!(future.state.lock().unwrap().callbacks.is_empty());
}
// Rather annoyingly, there's no safe way in Rust std to construct a Waker despite it being
// totally possible to construct from a trait implementation (though somewhat less efficient
// compared to a raw VTable). Instead, we have to write out a lot of boilerplate to build a
// waker, which we do here with a trivial Arc<AtomicBool> data element to track woke-ness.
const WAKER_V_TABLE: RawWakerVTable = RawWakerVTable::new(waker_clone, wake, wake_by_ref, drop);
unsafe fn wake_by_ref(ptr: *const ()) { let p = ptr as *const Arc<AtomicBool>; assert!(!(*p).fetch_or(true, Ordering::SeqCst)); }
unsafe fn drop(ptr: *const ()) { let p = ptr as *mut Arc<AtomicBool>; let _freed = Box::from_raw(p); }
unsafe fn wake(ptr: *const ()) { wake_by_ref(ptr); drop(ptr); }
unsafe fn waker_clone(ptr: *const ()) -> RawWaker {
let p = ptr as *const Arc<AtomicBool>;
RawWaker::new(Box::into_raw(Box::new(Arc::clone(&*p))) as *const (), &WAKER_V_TABLE)
}
fn create_waker() -> (Arc<AtomicBool>, Waker) {
let a = Arc::new(AtomicBool::new(false));
let waker = unsafe { Waker::from_raw(waker_clone((&a as *const Arc<AtomicBool>) as *const ())) };
(a, waker)
}
#[test]
fn test_future() {
let mut future = Future {
state: Arc::new(Mutex::new(FutureState {
callbacks: Vec::new(),
std_future_callbacks: Vec::new(),
callbacks_with_state: Vec::new(),
complete: false,
callbacks_made: false,
next_idx: 2,
})),
self_idx: 0,
};
let mut second_future = Future { state: Arc::clone(&future.state), self_idx: 1 };
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
assert!(!woken.load(Ordering::SeqCst));
let (second_woken, second_waker) = create_waker();
assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Pending);
assert!(!second_woken.load(Ordering::SeqCst));
complete_future(&future.state);
assert!(woken.load(Ordering::SeqCst));
assert!(second_woken.load(Ordering::SeqCst));
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
assert_eq!(Pin::new(&mut second_future).poll(&mut Context::from_waker(&second_waker)), Poll::Ready(()));
}
#[test]
#[cfg(feature = "std")]
fn test_dropped_future_doesnt_count() {
// Tests that if a Future gets drop'd before it is poll()ed `Ready` it doesn't count as
// having been woken, leaving the notify-required flag set.
let notifier = Notifier::new();
notifier.notify();
// If we get a future and don't touch it we're definitely still notify-required.
notifier.get_future();
assert!(notifier.get_future().wait_timeout(Duration::from_millis(1)));
assert!(!notifier.get_future().wait_timeout(Duration::from_millis(1)));
// Even if we poll'd once but didn't observe a `Ready`, we should be notify-required.
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
notifier.notify();
assert!(woken.load(Ordering::SeqCst));
assert!(notifier.get_future().wait_timeout(Duration::from_millis(1)));
// However, once we do poll `Ready` it should wipe the notify-required flag.
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
notifier.notify();
assert!(woken.load(Ordering::SeqCst));
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
assert!(!notifier.get_future().wait_timeout(Duration::from_millis(1)));
}
#[test]
fn test_poll_post_notify_completes() {
// Tests that if we have a future state that has completed, and we haven't yet requested a
// new future, if we get a notify prior to requesting that second future it is generated
// pre-completed.
let notifier = Notifier::new();
notifier.notify();
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
assert!(!woken.load(Ordering::SeqCst));
notifier.notify();
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
assert!(!woken.load(Ordering::SeqCst));
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
assert!(!woken.load(Ordering::SeqCst));
notifier.notify();
assert!(woken.load(Ordering::SeqCst));
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
}
#[test]
fn test_poll_post_notify_completes_initial_notified() {
// Identical to the previous test, but the first future completes via a wake rather than an
// immediate `Poll::Ready`.
let notifier = Notifier::new();
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
notifier.notify();
assert!(woken.load(Ordering::SeqCst));
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
notifier.notify();
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
assert!(!woken.load(Ordering::SeqCst));
let mut future = notifier.get_future();
let (woken, waker) = create_waker();
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Pending);
assert!(!woken.load(Ordering::SeqCst));
notifier.notify();
assert!(woken.load(Ordering::SeqCst));
assert_eq!(Pin::new(&mut future).poll(&mut Context::from_waker(&waker)), Poll::Ready(()));
}
#[test]
#[cfg(feature = "std")]
fn test_multi_future_sleep() {
// Tests the `Sleeper` with multiple futures.
let notifier_a = Notifier::new();
let notifier_b = Notifier::new();
// Set both notifiers as woken without sleeping yet.
notifier_a.notify();
notifier_b.notify();
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
// One future has woken us up, but the other should still have a pending notification.
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
// However once we've slept twice, we should no longer have any pending notifications
assert!(!Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future())
.wait_timeout(Duration::from_millis(10)));
// Test ordering somewhat more.
notifier_a.notify();
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
}
#[test]
#[cfg(feature = "std")]
fn sleeper_with_pending_callbacks() {
// This is similar to the above `test_multi_future_sleep` test, but in addition registers
// "normal" callbacks which will cause the futures to assume notification has occurred,
// rather than waiting for a woken sleeper.
let notifier_a = Notifier::new();
let notifier_b = Notifier::new();
// Set both notifiers as woken without sleeping yet.
notifier_a.notify();
notifier_b.notify();
// After sleeping one future (not guaranteed which one, however) will have its notification
// bit cleared.
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
// By registering a callback on the futures for both notifiers, one will complete
// immediately, but one will remain tied to the notifier, and will complete once the
// notifier is next woken, which will be considered the completion of the notification.
let callback_a = Arc::new(AtomicBool::new(false));
let callback_b = Arc::new(AtomicBool::new(false));
let callback_a_ref = Arc::clone(&callback_a);
let callback_b_ref = Arc::clone(&callback_b);
notifier_a.get_future().register_callback(Box::new(move || assert!(!callback_a_ref.fetch_or(true, Ordering::SeqCst))));
notifier_b.get_future().register_callback(Box::new(move || assert!(!callback_b_ref.fetch_or(true, Ordering::SeqCst))));
assert!(callback_a.load(Ordering::SeqCst) ^ callback_b.load(Ordering::SeqCst));
// If we now notify both notifiers again, the other callback will fire, completing the
// notification, and we'll be back to one pending notification.
notifier_a.notify();
notifier_b.notify();
assert!(callback_a.load(Ordering::SeqCst) && callback_b.load(Ordering::SeqCst));
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
assert!(!Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future())
.wait_timeout(Duration::from_millis(10)));
}
#[test]
#[cfg(feature = "std")]
fn multi_poll_stores_single_waker() {
// When a `Future` is `poll()`ed multiple times, only the last `Waker` should be called,
// but previously we'd store all `Waker`s until they're all woken at once. This tests a few
// cases to ensure `Future`s avoid storing an endless set of `Waker`s.
let notifier = Notifier::new();
let future_state = Arc::clone(&notifier.get_future().state);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
// Test that simply polling a future twice doesn't result in two pending `Waker`s.
let mut future_a = notifier.get_future();
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
// If we poll a second future, however, that will store a second `Waker`.
let mut future_b = notifier.get_future();
assert_eq!(Pin::new(&mut future_b).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 2);
// but when we drop the `Future`s, the pending Wakers will also be dropped.
mem::drop(future_a);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
mem::drop(future_b);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
// Further, after polling a future twice, if the notifier is woken all Wakers are dropped.
let mut future_a = notifier.get_future();
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
notifier.notify();
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Ready(()));
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
}
}