Never store more than one StdWaker per live Future

When an `std::future::Future` is `poll()`ed, we're only supposed to
use the latest `Waker` provided. However, we currently push an
`StdWaker` onto our callback list every time `poll` is called,
waking every `Waker` but also using more and more memory until the
`Future` itself is woken.

Here we fix this by removing any `StdWaker`s stored for a given
`Future` when it is `drop`ped or prior to pushing a new `StdWaker`
onto the list when `poll`ed.

Sadly, the introduction of a `Drop` impl for `Future` means we
can't trivially destructure the struct any longer, causing a few
methods to need to take `Future`s by reference rather than
ownership and `clone` a few `Arc`s.

Fixes #2874
This commit is contained in:
Matt Corallo 2024-02-13 22:43:51 +00:00
parent 5f404b9d0a
commit 8157c01eab
2 changed files with 68 additions and 19 deletions

View File

@ -854,8 +854,8 @@ impl BackgroundProcessor {
peer_manager.onion_message_handler().process_pending_events(&event_handler),
gossip_sync, logger, scorer, stop_thread.load(Ordering::Acquire),
{ Sleeper::from_two_futures(
channel_manager.get_event_or_persistence_needed_future(),
chain_monitor.get_update_future()
&channel_manager.get_event_or_persistence_needed_future(),
&chain_monitor.get_update_future()
).wait_timeout(Duration::from_millis(100)); },
|_| Instant::now(), |time: &Instant, dur| time.elapsed().as_secs() > dur, false,
|| {

View File

@ -180,16 +180,16 @@ impl Future {
/// Waits until this [`Future`] completes.
#[cfg(feature = "std")]
pub fn wait(self) {
Sleeper::from_single_future(self).wait();
pub fn wait(&self) {
Sleeper::from_single_future(&self).wait();
}
/// Waits until this [`Future`] completes or the given amount of time has elapsed.
///
/// Returns true if the [`Future`] completed, false if the time elapsed.
#[cfg(feature = "std")]
pub fn wait_timeout(self, max_wait: Duration) -> bool {
Sleeper::from_single_future(self).wait_timeout(max_wait)
pub fn wait_timeout(&self, max_wait: Duration) -> bool {
Sleeper::from_single_future(&self).wait_timeout(max_wait)
}
#[cfg(test)]
@ -202,6 +202,12 @@ impl Future {
}
}
impl Drop for Future {
fn drop(&mut self) {
self.state.lock().unwrap().std_future_callbacks.retain(|(idx, _)| *idx != self.self_idx);
}
}
use core::task::Waker;
struct StdWaker(pub Waker);
@ -216,6 +222,7 @@ impl<'a> StdFuture for Future {
Poll::Ready(())
} else {
let waker = cx.waker().clone();
state.std_future_callbacks.retain(|(idx, _)| *idx != self.self_idx);
state.std_future_callbacks.push((self.self_idx, StdWaker(waker)));
Poll::Pending
}
@ -232,17 +239,17 @@ pub struct Sleeper {
#[cfg(feature = "std")]
impl Sleeper {
/// Constructs a new sleeper from one future, allowing blocking on it.
pub fn from_single_future(future: Future) -> Self {
Self { notifiers: vec![future.state] }
pub fn from_single_future(future: &Future) -> Self {
Self { notifiers: vec![Arc::clone(&future.state)] }
}
/// Constructs a new sleeper from two futures, allowing blocking on both at once.
// Note that this is the common case - a ChannelManager and ChainMonitor.
pub fn from_two_futures(fut_a: Future, fut_b: Future) -> Self {
Self { notifiers: vec![fut_a.state, fut_b.state] }
pub fn from_two_futures(fut_a: &Future, fut_b: &Future) -> Self {
Self { notifiers: vec![Arc::clone(&fut_a.state), Arc::clone(&fut_b.state)] }
}
/// Constructs a new sleeper on many futures, allowing blocking on all at once.
pub fn new(futures: Vec<Future>) -> Self {
Self { notifiers: futures.into_iter().map(|f| f.state).collect() }
Self { notifiers: futures.into_iter().map(|f| Arc::clone(&f.state)).collect() }
}
/// Prepares to go into a wait loop body, creating a condition variable which we can block on
/// and an `Arc<Mutex<Option<_>>>` which gets set to the waking `Future`'s state prior to the
@ -447,13 +454,15 @@ mod tests {
// Wait on the other thread to finish its sleep, note that the leak only happened if we
// actually have to sleep here, not if we immediately return.
Sleeper::from_two_futures(future_a, future_b).wait();
Sleeper::from_two_futures(&future_a, &future_b).wait();
join_handle.join().unwrap();
// then drop the notifiers and make sure the future states are gone.
mem::drop(notifier_a);
mem::drop(notifier_b);
mem::drop(future_a);
mem::drop(future_b);
assert!(future_state_a.upgrade().is_none() && future_state_b.upgrade().is_none());
}
@ -655,18 +664,18 @@ mod tests {
// Set both notifiers as woken without sleeping yet.
notifier_a.notify();
notifier_b.notify();
Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
// One future has woken us up, but the other should still have a pending notification.
Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
// However once we've slept twice, we should no longer have any pending notifications
assert!(!Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future())
assert!(!Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future())
.wait_timeout(Duration::from_millis(10)));
// Test ordering somewhat more.
notifier_a.notify();
Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
}
#[test]
@ -684,7 +693,7 @@ mod tests {
// After sleeping one future (not guaranteed which one, however) will have its notification
// bit cleared.
Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
// By registering a callback on the futures for both notifiers, one will complete
// immediately, but one will remain tied to the notifier, and will complete once the
@ -703,8 +712,48 @@ mod tests {
notifier_b.notify();
assert!(callback_a.load(Ordering::SeqCst) && callback_b.load(Ordering::SeqCst));
Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future()).wait();
assert!(!Sleeper::from_two_futures(notifier_a.get_future(), notifier_b.get_future())
Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future()).wait();
assert!(!Sleeper::from_two_futures(&notifier_a.get_future(), &notifier_b.get_future())
.wait_timeout(Duration::from_millis(10)));
}
#[test]
#[cfg(feature = "std")]
fn multi_poll_stores_single_waker() {
// When a `Future` is `poll()`ed multiple times, only the last `Waker` should be called,
// but previously we'd store all `Waker`s until they're all woken at once. This tests a few
// cases to ensure `Future`s avoid storing an endless set of `Waker`s.
let notifier = Notifier::new();
let future_state = Arc::clone(&notifier.get_future().state);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
// Test that simply polling a future twice doesn't result in two pending `Waker`s.
let mut future_a = notifier.get_future();
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
// If we poll a second future, however, that will store a second `Waker`.
let mut future_b = notifier.get_future();
assert_eq!(Pin::new(&mut future_b).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 2);
// but when we drop the `Future`s, the pending Wakers will also be dropped.
mem::drop(future_a);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
mem::drop(future_b);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
// Further, after polling a future twice, if the notifier is woken all Wakers are dropped.
let mut future_a = notifier.get_future();
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Pending);
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 1);
notifier.notify();
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
assert_eq!(Pin::new(&mut future_a).poll(&mut Context::from_waker(&create_waker().1)), Poll::Ready(()));
assert_eq!(future_state.lock().unwrap().std_future_callbacks.len(), 0);
}
}