We never had the `NetworkGraph::node_failed` method implemented. The
scorer now handles non-permanent failures by downgrading nodes, so we
don't want that implemented.
The method is renamed to `node_failed_permanent` to explicitly indicate
that this is the only case it handles. We also add tracking in the form
of two maps as fields of `NetworkGraph`, namely, `removed_nodes` and
`removed_channels`. We track these removed graph entries to ensure we
don't just resync them right away from gossip soon after removing them.
We stop tracking these removed nodes whenever `remove_stale_channels_and_tracking()`
is called and the entries have been tracked for longer than
`REMOVED_ENTRIES_TRACKING_AGE_LIMIT_SECS` which is currently set to one
week.
If we receive a monitor event from a forwarded-to channel which
contains a preimage for an HTLC, we have to propogate that preimage
back to the forwarded-from channel monitor. However, once we have
that update, we're running in a relatively unsafe state - we have
the preimage in memory, but if we were to crash the forwarded-to
channel monitor will not regenerate the update with the preimage
for us. If we haven't managed to write the monitor update to the
forwarded-from channel by that point, we've lost the preimage, and,
thus, money!
When a `chain::Watch` `ChannelMonitor` update method is called, the
user has three options:
(a) persist the monitor update immediately and return success,
(b) fail to persist the monitor update immediately and return
failure,
(c) return a flag indicating the monitor update is in progress and
will complete in the future.
(c) is rather harmless, and in some deployments should be expected
to be the return value for all monitor update calls, but currently
requires returning `Err(ChannelMonitorUpdateErr::TemporaryFailure)`
which isn't very descriptive and sounds scarier than it is.
Instead, here, we change the return type used to be a single enum
(rather than a Result) and rename `TemporaryFailure`
`UpdateInProgress`.
While we could, in theory, add support to the bindings logic to map
`Box<dyn Trait>`, there isn't a whole lot of use doing so when its
incredibly trivial to do directly.
This adds a trivial wrapper around `Future::register_callback` that
is only built in bindings and which is linked in the
`register_callback` docs for visibility.
`hashbrown` depends on `ahash` which depends on `once_cell`. Sadly,
in https://github.com/matklad/once_cell/issues/201 the `once_cell`
maintainer decided they didn't want to do the work of having an
MSRV policy for `once_cell`, making `ahash`, and thus `hashbrown`
require the latest compiler. I've reached out to `ahash` to suggest
they drop the dependency (as they could trivially work around not
having it), but until then we simply downgrade `hashbrown`.
`rust-bitcoin` also requires an older `hashbrown` so we're actually
reducing our total `no-std` code here anyway.
In c353c3ed7c an accessor method was
added which returns an `Option<&u64>`. While this allows Rust to
return an 8-byte object, returning a reference to something
pointer-sized is a somewhat strange API.
Instead, we opt for a straight `Option<u64>`, which is sadly
somewhat larger on the stack, but is simpler and already supported
in the bindings generation.
In c353c3ed7c, new scorer-updating
methods were added to the `Router` object, however they were
passed as a `Vec` of references. We use the list-of-references
pattern to make bindings simpler (by not requiring allocations per
entry), however there's no reason prefer to passing a `Vec` over
a slice, given the `Vec` doesn't hold ownership of the objects
anyway.
In the bindings, we don't directly export any `std` types. Instead,
we provide trivial wrappers around them which expose only a
bindings-compatible API (and which is code in-crate, where the
bindings generator can see it).
We never quite finished this for `MultiThreadedLockableScore` - due
to some limitations in the bindings generator and the way the
scores are used in `lightning-invoice`, the scoring API ended up
being further concretized in patches for the bindings. Luckily the
scoring interface has been rewritten somewhat, and it so happens
that we can now generate bindings with the upstream code.
The final piece of the puzzle is done here, where we add a struct
which wraps `MutexGuard` so that we can expose the lock for
`MultiThreadedLockableScore`.
The `forward_htlc` was prior to this commit only held at the same time
as the `channel_state` lock during the write process of the
`ChannelManager`. This commit removes the lock order dependency, by
taking the `channel_state`lock temporarily during the write process.
As we are eventually removing the `channel_state` lock, this commit
moves the `forward_htlcs` map out of the `channel_state` lock, to ease
that process.
We do this to enable users to create routers that do not need a scorer.
This can be useful if they are running a node the delegates pathfinding.
* Move `Score` type parameterization from `InvoicePayer` and `Router` to
`DefaultRouter`
* Adds a new field, `scorer`, to `DefaultRouter`
* Move `AccountsForInFlightHtlcs` to `DefaultRouter`, which we
will use to wrap the new `scorer` field, so scoring only happens in
`DefaultRouter` explicitly.
* Add scoring related functions to `Router` trait that we used to call
directly from `InvoicePayer`.
* Instead of parameterizing `scorer` in `find_route`, we replace it with
inflight_map so `InvoicePayer` can pass on information about inflight
HTLCs to the router.
* Introduced a new tuple struct, InFlightHtlcs, that wraps functionality
for querying used liquidity.
`cargo bench` sets `#[cfg(test)]` so our current checks for
enabling our lockorder debugging end up matching when we're trying
to build performance benchmarks.
This adds explicit checks to our debug_lockorder logic to filter
out `feature = "_bench_unstable"` builds.
See doc updates for more info on the edge case this prevents, and
there isn't really a strong reason why we would need to broadcast
the latest state immediately. Specifically, in the case of HTLC
claims (the most important reason to ensure we have state on chain
if it cannot be persisted), we will still force-close if there are
HTLCs which need claiming and are going to expire.
Surprisingly, there were no tests which failed as a result of this
change, but a new one has been added.
Now that the features contexts track the full set of all known
features, rather than the set of supported features, all defined
features should be listed in the context definition macro.
This adds a compile-time assertion to check that all bits for known
features are set in the context known set.
Now that the `*Features::known` constructor has been removed, there
is no reason to define feature bits as either optional required in
`features.rs` - that logic now belongs in the modules that are
responsible for the given features.
Instead, we only list all features in each context.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we (finally) remove the `known` constructor entirely,
modifying tests in the `features` module as required.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
In anticipation of removing the `known` constructor, this commit
removes all remaining references to it outside of features.rs.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in our fuzz tests.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the
`lightning-background-processor` and `lightning-persister` crate
tests.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the
`lightning-net-tokio` crate.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the
`lightning-invoice` crate.
As we move towards specify supported/required feature bits in the
module(s) where they are supported, the global `known` feature set
constructors no longer make sense.
Here we stop relying on the `known` method in the channel modules.