If a `Notifier` gets `notify()`ed and the a `Future` is fetched,
even though the `Future` is marked completed from the start and
the user may pass callbacks which are called, we'll never wipe the
needs-notify bit in the `Notifier`.
The solution is to keep track of the `FutureState` in the returned
`Future` even though its `complete` from the start, adding a new
flag in the `FutureState` which indicates callbacks have been made
and checking that flag when waiting or returning a second `Future`.
We increase the `user_channel_id` type from `u64` to `u128`. In order to
maintain backwards compatibility, we have to de-/serialize it as two
separate `u64`s in `Event` as well as in the `Channel` itself.
Previously, all inbound channels defaulted to a `user_channel_id` of 0,
which didn't allow for them being discerned on that basis. Here, we
simply randomize the identifier to fix this and enable the use of
`user_channel_id` as a true identifier for channels (assuming an equally
reasonable value is chosen for outbound channels and given upon
`create_channel()`).
After the first persistence-required `Future` wakeup, we'll always
complete additional futures instantly as we don't clear the
"need wake" bit. Instead, we need to just assume that if a future
was generated (and not immediately drop'd) that its sufficient to
notify the user.
We introduce a new sealed trait BaseEventHandler that has a blanket
implementation for any T. Since the trait cannot be implemented outside
of the crate, this allow us to expose specific implementations of
InvoicePayer that allow for synchronous and asynchronous event handling.
When a user attempts to send a payment but it fails due to
idempotency key violation, they need to know that this was the
reason as they need to handle the error programmatically
differently from other errors.
Here we simply add a new `PaymentSendFailure` enum variant for
`DuplicatePayment` to allow for that.
It was pointed out that its quite confusing that
`AllFailedRetrySafe` does not allow you to call `retry_payment`,
though the documentation on it does specify this. Instead, we
simply rename it to `AllFailedResendSafe` to indicate that the
action that is safe to take is *resending*, not *retrying*.
Previously, `Confirm::get_relevant_txids()` only returned a list of
transactions that have to be monitored for reorganization out of the
chain. This interface however required double bookkeeping: while we
internally keep track of the best block, height, etc, it would also
require the user to keep track which transaction was previously
confirmed in which block and to take actions based on any change, e.g,
to reconfirm them when the block would be reorged-out and the
transactions had been reconfirmed in another block.
Here, we track the confirmation block hash internally and return it via
`Confirm::get_relevant_txids()` to the user, which alleviates the
requirement for double bookkeeping: the user can now simply check
whether the given transaction is still confirmed and in the given block,
and take action if not.
We also split `update_claims_view`: Previously it was one, now it's two
methods: `update_claims_view_from_matched_txn` and
`update_claims_view_from_requests`.
Used in upcoming commit(s) when we generate the PaymentIntercepted event for
intercepted payments.
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
In upcoming commit(s), we'll want to store intercepted HTLC forwards in
ChannelManager before the user signals that they should be forwarded. It
wouldn't make sense to store a HTLCForwardInfo as-is because the FailHTLC
variant doesn't make sense, so we refactor out the ::AddHTLC contents into its
own struct for storage.
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Add a builder for creating offers given a required description and
node_id. Other settings are optional and duplicative settings will
override previous settings for non-Vec fields.
BOLT 12's offer message is encoded as a TLV stream (i.e., a sequence of
TLV records). impl_writeable_tlv_based can't be used because it writes
the overall length of the struct, whereas TLV streams only include the
length of each TLV record. Add a `tlv_stream` macro for defining structs
used in encoding.
TLV records containing a single variable-length type should not encode
the types length in the value since it is redundant. Add a wrapper type
that can be used within a TLV stream to support the correct behavior
during serialization and de-serialization.
When serializing variable-length types as part of a TLV stream, the
length does not need to be serialized as it is already encoded in TLV
records. Add a WithoutLength wrapper for this encoding. Replace
VecReadWrapper and VecWriteWrapper with this single type to avoid
redundant encoders.