Move restart-related tests to their own file

This commit is contained in:
Matt Corallo 2022-11-15 03:45:17 +00:00
parent e359c40143
commit 97b210dd97
3 changed files with 818 additions and 785 deletions

View file

@ -15,12 +15,12 @@ use crate::chain;
use crate::chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
use crate::chain::chaininterface::LowerBoundedFeeEstimator;
use crate::chain::channelmonitor;
use crate::chain::channelmonitor::{ChannelMonitor, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY};
use crate::chain::channelmonitor::{CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY};
use crate::chain::transaction::OutPoint;
use crate::chain::keysinterface::{BaseSign, KeysInterface};
use crate::ln::{PaymentPreimage, PaymentSecret, PaymentHash};
use crate::ln::channel::{commitment_tx_base_weight, COMMITMENT_TX_WEIGHT_PER_HTLC, CONCURRENT_INBOUND_HTLC_FEE_BUFFER, FEE_SPIKE_BUFFER_FEE_INCREASE_MULTIPLE, MIN_AFFORDABLE_HTLC_COUNT};
use crate::ln::channelmanager::{self, ChannelManager, ChannelManagerReadArgs, PaymentId, RAACommitmentOrder, PaymentSendFailure, BREAKDOWN_TIMEOUT, MIN_CLTV_EXPIRY_DELTA};
use crate::ln::channelmanager::{self, PaymentId, RAACommitmentOrder, PaymentSendFailure, BREAKDOWN_TIMEOUT, MIN_CLTV_EXPIRY_DELTA};
use crate::ln::channel::{Channel, ChannelError};
use crate::ln::{chan_utils, onion_utils};
use crate::ln::chan_utils::{OFFERED_HTLC_SCRIPT_WEIGHT, htlc_success_tx_weight, htlc_timeout_tx_weight, HTLCOutputInCommitment};
@ -3852,152 +3852,6 @@ fn test_drop_messages_peer_disconnect_b() {
do_test_drop_messages_peer_disconnect(6, false);
}
#[test]
fn test_funding_peer_disconnect() {
// Test that we can lock in our funding tx while disconnected
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, channelmanager::provided_init_features(), channelmanager::provided_init_features());
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
confirm_transaction(&nodes[0], &tx);
let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
assert!(events_1.is_empty());
reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
confirm_transaction(&nodes[1], &tx);
let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
assert!(events_2.is_empty());
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
// nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events_3.len(), 1);
let as_channel_ready = match events_3[0] {
MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[1].node.get_our_node_id());
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_3[0]),
};
// nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
// announcement_signatures as well as channel_update.
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events_4.len(), 3);
let chan_id;
let bs_channel_ready = match events_4[0] {
MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
chan_id = msg.channel_id;
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_4[0]),
};
let bs_announcement_sigs = match events_4[1] {
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_4[1]),
};
match events_4[2] {
MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
},
_ => panic!("Unexpected event {:?}", events_4[2]),
}
// Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
// generates a duplicative private channel_update
nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events_5.len(), 1);
match events_5[0] {
MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
},
_ => panic!("Unexpected event {:?}", events_5[0]),
};
// When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
// announcement_signatures.
nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events_6.len(), 1);
let as_announcement_sigs = match events_6[0] {
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[1].node.get_our_node_id());
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_6[0]),
};
expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
// When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
// broadcast the channel announcement globally, as well as re-send its (now-public)
// channel_update.
nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events_7.len(), 1);
let (chan_announcement, as_update) = match events_7[0] {
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
(msg.clone(), update_msg.clone())
},
_ => panic!("Unexpected event {:?}", events_7[0]),
};
// Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
// same channel_announcement.
nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events_8.len(), 1);
let bs_update = match events_8[0] {
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
assert_eq!(*msg, chan_announcement);
update_msg.clone()
},
_ => panic!("Unexpected event {:?}", events_8[0]),
};
// Provide the channel announcement and public updates to the network graph
nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
// Check that after deserialization and reconnection we can still generate an identical
// channel_announcement from the cached signatures.
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
}
#[test]
fn test_channel_ready_without_best_block_updated() {
// Previously, if we were offline when a funding transaction was locked in, and then we came
@ -4303,287 +4157,6 @@ fn test_holding_cell_htlc_add_timeouts() {
do_test_holding_cell_htlc_add_timeouts(true);
}
#[test]
fn test_no_txn_manager_serialize_deserialize() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, channelmanager::provided_init_features(), channelmanager::provided_init_features());
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
let chan_0_monitor_serialized =
get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
for node in nodes.iter() {
assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
node.gossip_sync.handle_channel_update(&as_update).unwrap();
node.gossip_sync.handle_channel_update(&bs_update).unwrap();
}
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
#[test]
fn test_manager_serialize_deserialize_events() {
// This test makes sure the events field in ChannelManager survives de/serialization
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
// Start creating a channel, but stop right before broadcasting the funding transaction
let channel_value = 100000;
let push_msat = 10001;
let a_flags = channelmanager::provided_init_features();
let b_flags = channelmanager::provided_init_features();
let node_a = nodes.remove(0);
let node_b = nodes.remove(0);
node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), a_flags, &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), b_flags, &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
check_added_monitors!(node_a, 0);
node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
{
let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
assert_eq!(added_monitors.len(), 1);
assert_eq!(added_monitors[0].0, funding_output);
added_monitors.clear();
}
let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
{
let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
assert_eq!(added_monitors.len(), 1);
assert_eq!(added_monitors[0].0, funding_output);
added_monitors.clear();
}
// Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
nodes.push(node_a);
nodes.push(node_b);
// Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
// After deserializing, make sure the funding_transaction is still held by the channel manager
let events_4 = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events_4.len(), 0);
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
// Make sure the channel is functioning as though the de/serialization never happened
assert_eq!(nodes[0].node.list_channels().len(), 1);
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
for node in nodes.iter() {
assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
node.gossip_sync.handle_channel_update(&as_update).unwrap();
node.gossip_sync.handle_channel_update(&bs_update).unwrap();
}
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
#[test]
fn test_simple_manager_serialize_deserialize() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
}
#[test]
fn test_manager_serialize_deserialize_inconsistent_monitor() {
// Test deserializing a ChannelManager with an out-of-date ChannelMonitor
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let logger: test_utils::TestLogger;
let fee_estimator: test_utils::TestFeeEstimator;
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
let mut node_0_stale_monitors_serialized = Vec::new();
for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
let mut writer = test_utils::TestVecWriter(Vec::new());
get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
node_0_stale_monitors_serialized.push(writer.0);
}
let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
// Serialize the ChannelManager here, but the monitor we keep up-to-date
let nodes_0_serialized = nodes[0].node.encode();
route_payment(&nodes[0], &[&nodes[3]], 1000000);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
// Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
// nodes[3])
let mut node_0_monitors_serialized = Vec::new();
for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
}
logger = test_utils::TestLogger::new();
fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
persister = test_utils::TestPersister::new();
let keys_manager = &chanmon_cfgs[0].keys_manager;
new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager);
nodes[0].chain_monitor = &new_chain_monitor;
let mut node_0_stale_monitors = Vec::new();
for serialized in node_0_stale_monitors_serialized.iter() {
let mut read = &serialized[..];
let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, keys_manager).unwrap();
assert!(read.is_empty());
node_0_stale_monitors.push(monitor);
}
let mut node_0_monitors = Vec::new();
for serialized in node_0_monitors_serialized.iter() {
let mut read = &serialized[..];
let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, keys_manager).unwrap();
assert!(read.is_empty());
node_0_monitors.push(monitor);
}
let mut nodes_0_read = &nodes_0_serialized[..];
if let Err(msgs::DecodeError::InvalidValue) =
<(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
default_config: UserConfig::default(),
keys_manager,
fee_estimator: &fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: &logger,
channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
}) { } else {
panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
};
let mut nodes_0_read = &nodes_0_serialized[..];
let (_, nodes_0_deserialized_tmp) =
<(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
default_config: UserConfig::default(),
keys_manager,
fee_estimator: &fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: &logger,
channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
}).unwrap();
nodes_0_deserialized = nodes_0_deserialized_tmp;
assert!(nodes_0_read.is_empty());
{ // Channel close should result in a commitment tx
let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(txn.len(), 1);
check_spends!(txn[0], funding_tx);
assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
}
for monitor in node_0_monitors.drain(..) {
assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
ChannelMonitorUpdateStatus::Completed);
check_added_monitors!(nodes[0], 1);
}
nodes[0].node = &nodes_0_deserialized;
check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
// nodes[1] and nodes[2] have no lost state with nodes[0]...
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
//... and we can even still claim the payment!
claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
let mut found_err = false;
for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
match action {
&ErrorAction::SendErrorMessage { ref msg } => {
assert_eq!(msg.channel_id, channel_id);
assert!(!found_err);
found_err = true;
},
_ => panic!("Unexpected event!"),
}
}
}
assert!(found_err);
}
macro_rules! check_spendable_outputs {
($node: expr, $keysinterface: expr) => {
{
@ -7326,124 +6899,6 @@ fn test_user_configurable_csv_delay() {
} else { assert!(false); }
}
fn do_test_data_loss_protect(reconnect_panicing: bool) {
// When we get a data_loss_protect proving we're behind, we immediately panic as the
// chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
// panic message informs the user they should force-close without broadcasting, which is tested
// if `reconnect_panicing` is not set.
let mut chanmon_cfgs = create_chanmon_cfgs(2);
// We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
// during signing due to revoked tx
chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
let persister;
let new_chain_monitor;
let nodes_0_deserialized;
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
// Cache node A state before any channel update
let previous_node_state = nodes[0].node.encode();
let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
if reconnect_panicing {
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
// Check we close channel detecting A is fallen-behind
// Check that we sent the warning message when we detected that A has fallen behind,
// and give the possibility for A to recover from the warning.
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
{
let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
// The node B should not broadcast the transaction to force close the channel!
assert!(node_txn.is_empty());
}
let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
// Check A panics upon seeing proof it has fallen behind.
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
return; // By this point we should have panic'ed!
}
nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
{
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_txn.len(), 0);
}
for msg in nodes[0].node.get_and_clear_pending_msg_events() {
if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
} else if let MessageSendEvent::HandleError { ref action, .. } = msg {
match action {
&ErrorAction::SendErrorMessage { ref msg } => {
assert_eq!(msg.data, "Channel force-closed");
},
_ => panic!("Unexpected event!"),
}
} else {
panic!("Unexpected event {:?}", msg)
}
}
// after the warning message sent by B, we should not able to
// use the channel, or reconnect with success to the channel.
assert!(nodes[0].node.list_usable_channels().is_empty());
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
let mut err_msgs_0 = Vec::with_capacity(1);
for msg in nodes[0].node.get_and_clear_pending_msg_events() {
if let MessageSendEvent::HandleError { ref action, .. } = msg {
match action {
&ErrorAction::SendErrorMessage { ref msg } => {
assert_eq!(msg.data, "Failed to find corresponding channel");
err_msgs_0.push(msg.clone());
},
_ => panic!("Unexpected event!"),
}
} else {
panic!("Unexpected event!");
}
}
assert_eq!(err_msgs_0.len(), 1);
nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
assert!(nodes[1].node.list_usable_channels().is_empty());
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_owned() });
check_closed_broadcast!(nodes[1], false);
}
#[test]
#[should_panic]
fn test_data_loss_protect_showing_stale_state_panics() {
do_test_data_loss_protect(true);
}
#[test]
fn test_force_close_without_broadcast() {
do_test_data_loss_protect(false);
}
#[test]
fn test_check_htlc_underpaying() {
// Send payment through A -> B but A is maliciously
@ -9462,82 +8917,6 @@ fn test_tx_confirmed_skipping_blocks_immediate_broadcast() {
do_test_tx_confirmed_skipping_blocks_immediate_broadcast(true);
}
#[test]
fn test_forwardable_regen() {
// Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
// PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
// HTLCs.
// We test it for both payment receipt and payment forwarding.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
// First send a payment to nodes[1]
let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
// Next send a payment which is forwarded by nodes[1]
let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
// There is already a PendingHTLCsForwardable event "pending" so another one will not be
// generated
assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
// Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
// Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
// the commitment state.
reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
expect_pending_htlcs_forwardable!(nodes[1]);
expect_payment_received!(nodes[1], payment_hash, payment_secret, 100_000);
check_added_monitors!(nodes[1], 1);
let mut events = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[2]);
expect_payment_received!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
}
fn do_test_dup_htlc_second_rejected(test_for_second_fail_panic: bool) {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
@ -9864,168 +9243,6 @@ fn test_double_partial_claim() {
assert!(nodes[3].node.get_and_clear_pending_msg_events().is_empty());
}
fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
// Test what happens if a node receives an MPP payment, claims it, but crashes before
// persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
// updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
// have the PaymentReceived event, (b) have one (or two) channel(s) that goes on chain with the
// HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
// not have the preimage tied to the still-pending HTLC.
//
// To get to the correct state, on startup we should propagate the preimage to the
// still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
// receiving the preimage without a state update.
//
// Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
// definitely claimed.
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features());
create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features());
let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
// Create an MPP route for 15k sats, more than the default htlc-max of 10%
let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
assert_eq!(route.paths.len(), 2);
route.paths.sort_by(|path_a, _| {
// Sort the path so that the path through nodes[1] comes first
if path_a[0].pubkey == nodes[1].node.get_our_node_id() {
core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
});
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 2);
// Send the payment through to nodes[3] *without* clearing the PaymentReceived event
let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(send_events.len(), 2);
do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), send_events[0].clone(), true, false, None);
do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), send_events[1].clone(), true, false, None);
// Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
// monitors and ChannelManager, for use later, if we don't want to persist both monitors.
let mut original_monitor = test_utils::TestVecWriter(Vec::new());
if !persist_both_monitors {
for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
if outpoint.to_channel_id() == chan_id_not_persisted {
assert!(original_monitor.0.is_empty());
nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
}
}
}
let original_manager = nodes[3].node.encode();
expect_payment_received!(nodes[3], payment_hash, payment_secret, 15_000_000);
nodes[3].node.claim_funds(payment_preimage);
check_added_monitors!(nodes[3], 2);
expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
// Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
// crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
// with the old ChannelManager.
let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
if outpoint.to_channel_id() == chan_id_persisted {
assert!(updated_monitor.0.is_empty());
nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
}
}
// If `persist_both_monitors` is set, get the second monitor here as well
if persist_both_monitors {
for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
if outpoint.to_channel_id() == chan_id_not_persisted {
assert!(original_monitor.0.is_empty());
nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
}
}
}
// Now restart nodes[3].
reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
// On startup the preimage should have been copied into the non-persisted monitor:
assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
// During deserialization, we should have closed one channel and broadcast its latest
// commitment transaction. We should also still have the original PaymentReceived event we
// never finished processing.
let events = nodes[3].node.get_and_clear_pending_events();
assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
if let Event::PaymentReceived { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
if persist_both_monitors {
if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
}
// On restart, we should also get a duplicate PaymentClaimed event as we persisted the
// ChannelManager prior to handling the original one.
if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
events[if persist_both_monitors { 3 } else { 2 }]
{
assert_eq!(payment_hash, our_payment_hash);
} else { panic!(); }
assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
if !persist_both_monitors {
// If one of the two channels is still live, reveal the payment preimage over it.
nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
// Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
// claim should fly.
let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
check_added_monitors!(nodes[3], 1);
assert_eq!(ds_msgs.len(), 2);
if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[1] {} else { panic!(); }
let cs_updates = match ds_msgs[0] {
MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
check_added_monitors!(nodes[2], 1);
let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
cs_updates
}
_ => panic!(),
};
nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
expect_payment_sent!(nodes[0], payment_preimage);
}
}
#[test]
fn test_partial_claim_before_restart() {
do_test_partial_claim_before_restart(false);
do_test_partial_claim_before_restart(true);
}
/// The possible events which may trigger a `max_dust_htlc_exposure` breach
#[derive(Clone, Copy, PartialEq)]
enum ExposureEvent {

View file

@ -67,6 +67,9 @@ mod chanmon_update_fail_tests;
mod reorg_tests;
#[cfg(test)]
#[allow(unused_mut)]
mod reload_tests;
#[cfg(test)]
#[allow(unused_mut)]
mod onion_route_tests;
#[cfg(test)]
#[allow(unused_mut)]

View file

@ -0,0 +1,813 @@
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! Functional tests which test for correct behavior across node restarts.
use crate::chain::{ChannelMonitorUpdateStatus, Watch};
use crate::chain::channelmonitor::ChannelMonitor;
use crate::chain::transaction::OutPoint;
use crate::ln::channelmanager::{self, ChannelManager, ChannelManagerReadArgs, PaymentId};
use crate::ln::msgs;
use crate::ln::msgs::{ChannelMessageHandler, RoutingMessageHandler, ErrorAction};
use crate::util::enforcing_trait_impls::EnforcingSigner;
use crate::util::test_utils;
use crate::util::events::{Event, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
use crate::util::ser::{Writeable, ReadableArgs};
use crate::util::config::UserConfig;
use bitcoin::hash_types::BlockHash;
use crate::prelude::*;
use core::default::Default;
use crate::sync::Mutex;
use crate::ln::functional_test_utils::*;
#[test]
fn test_funding_peer_disconnect() {
// Test that we can lock in our funding tx while disconnected
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, channelmanager::provided_init_features(), channelmanager::provided_init_features());
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
confirm_transaction(&nodes[0], &tx);
let events_1 = nodes[0].node.get_and_clear_pending_msg_events();
assert!(events_1.is_empty());
reconnect_nodes(&nodes[0], &nodes[1], (false, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
confirm_transaction(&nodes[1], &tx);
let events_2 = nodes[1].node.get_and_clear_pending_msg_events();
assert!(events_2.is_empty());
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let as_reestablish = get_chan_reestablish_msgs!(nodes[0], nodes[1]).pop().unwrap();
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
// nodes[0] hasn't yet received a channel_ready, so it only sends that on reconnect.
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
let events_3 = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events_3.len(), 1);
let as_channel_ready = match events_3[0] {
MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[1].node.get_our_node_id());
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_3[0]),
};
// nodes[1] received nodes[0]'s channel_ready on the first reconnect above, so it should send
// announcement_signatures as well as channel_update.
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &as_reestablish);
let events_4 = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events_4.len(), 3);
let chan_id;
let bs_channel_ready = match events_4[0] {
MessageSendEvent::SendChannelReady { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
chan_id = msg.channel_id;
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_4[0]),
};
let bs_announcement_sigs = match events_4[1] {
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_4[1]),
};
match events_4[2] {
MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
},
_ => panic!("Unexpected event {:?}", events_4[2]),
}
// Re-deliver nodes[0]'s channel_ready, which nodes[1] can safely ignore. It currently
// generates a duplicative private channel_update
nodes[1].node.handle_channel_ready(&nodes[0].node.get_our_node_id(), &as_channel_ready);
let events_5 = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events_5.len(), 1);
match events_5[0] {
MessageSendEvent::SendChannelUpdate { ref node_id, msg: _ } => {
assert_eq!(*node_id, nodes[0].node.get_our_node_id());
},
_ => panic!("Unexpected event {:?}", events_5[0]),
};
// When we deliver nodes[1]'s channel_ready, however, nodes[0] will generate its
// announcement_signatures.
nodes[0].node.handle_channel_ready(&nodes[1].node.get_our_node_id(), &bs_channel_ready);
let events_6 = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events_6.len(), 1);
let as_announcement_sigs = match events_6[0] {
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
assert_eq!(*node_id, nodes[1].node.get_our_node_id());
msg.clone()
},
_ => panic!("Unexpected event {:?}", events_6[0]),
};
expect_channel_ready_event(&nodes[0], &nodes[1].node.get_our_node_id());
expect_channel_ready_event(&nodes[1], &nodes[0].node.get_our_node_id());
// When we deliver nodes[1]'s announcement_signatures to nodes[0], nodes[0] should immediately
// broadcast the channel announcement globally, as well as re-send its (now-public)
// channel_update.
nodes[0].node.handle_announcement_signatures(&nodes[1].node.get_our_node_id(), &bs_announcement_sigs);
let events_7 = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events_7.len(), 1);
let (chan_announcement, as_update) = match events_7[0] {
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
(msg.clone(), update_msg.clone())
},
_ => panic!("Unexpected event {:?}", events_7[0]),
};
// Finally, deliver nodes[0]'s announcement_signatures to nodes[1] and make sure it creates the
// same channel_announcement.
nodes[1].node.handle_announcement_signatures(&nodes[0].node.get_our_node_id(), &as_announcement_sigs);
let events_8 = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events_8.len(), 1);
let bs_update = match events_8[0] {
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
assert_eq!(*msg, chan_announcement);
update_msg.clone()
},
_ => panic!("Unexpected event {:?}", events_8[0]),
};
// Provide the channel announcement and public updates to the network graph
nodes[0].gossip_sync.handle_channel_announcement(&chan_announcement).unwrap();
nodes[0].gossip_sync.handle_channel_update(&bs_update).unwrap();
nodes[0].gossip_sync.handle_channel_update(&as_update).unwrap();
let (route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[1], 1000000);
let payment_preimage = send_along_route(&nodes[0], route, &[&nodes[1]], 1000000).0;
claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
// Check that after deserialization and reconnection we can still generate an identical
// channel_announcement from the cached signatures.
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], &nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
}
#[test]
fn test_no_txn_manager_serialize_deserialize() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let tx = create_chan_between_nodes_with_value_init(&nodes[0], &nodes[1], 100000, 10001, channelmanager::provided_init_features(), channelmanager::provided_init_features());
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
let chan_0_monitor_serialized =
get_monitor!(nodes[0], OutPoint { txid: tx.txid(), index: 0 }.to_channel_id()).encode();
reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
for node in nodes.iter() {
assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
node.gossip_sync.handle_channel_update(&as_update).unwrap();
node.gossip_sync.handle_channel_update(&bs_update).unwrap();
}
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
#[test]
fn test_manager_serialize_deserialize_events() {
// This test makes sure the events field in ChannelManager survives de/serialization
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
// Start creating a channel, but stop right before broadcasting the funding transaction
let channel_value = 100000;
let push_msat = 10001;
let a_flags = channelmanager::provided_init_features();
let b_flags = channelmanager::provided_init_features();
let node_a = nodes.remove(0);
let node_b = nodes.remove(0);
node_a.node.create_channel(node_b.node.get_our_node_id(), channel_value, push_msat, 42, None).unwrap();
node_b.node.handle_open_channel(&node_a.node.get_our_node_id(), a_flags, &get_event_msg!(node_a, MessageSendEvent::SendOpenChannel, node_b.node.get_our_node_id()));
node_a.node.handle_accept_channel(&node_b.node.get_our_node_id(), b_flags, &get_event_msg!(node_b, MessageSendEvent::SendAcceptChannel, node_a.node.get_our_node_id()));
let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&node_a, &node_b.node.get_our_node_id(), channel_value, 42);
node_a.node.funding_transaction_generated(&temporary_channel_id, &node_b.node.get_our_node_id(), tx.clone()).unwrap();
check_added_monitors!(node_a, 0);
node_b.node.handle_funding_created(&node_a.node.get_our_node_id(), &get_event_msg!(node_a, MessageSendEvent::SendFundingCreated, node_b.node.get_our_node_id()));
{
let mut added_monitors = node_b.chain_monitor.added_monitors.lock().unwrap();
assert_eq!(added_monitors.len(), 1);
assert_eq!(added_monitors[0].0, funding_output);
added_monitors.clear();
}
let bs_funding_signed = get_event_msg!(node_b, MessageSendEvent::SendFundingSigned, node_a.node.get_our_node_id());
node_a.node.handle_funding_signed(&node_b.node.get_our_node_id(), &bs_funding_signed);
{
let mut added_monitors = node_a.chain_monitor.added_monitors.lock().unwrap();
assert_eq!(added_monitors.len(), 1);
assert_eq!(added_monitors[0].0, funding_output);
added_monitors.clear();
}
// Normally, this is where node_a would broadcast the funding transaction, but the test de/serializes first instead
nodes.push(node_a);
nodes.push(node_b);
// Start the de/seriailization process mid-channel creation to check that the channel manager will hold onto events that are serialized
let chan_0_monitor_serialized = get_monitor!(nodes[0], bs_funding_signed.channel_id).encode();
reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
// After deserializing, make sure the funding_transaction is still held by the channel manager
let events_4 = nodes[0].node.get_and_clear_pending_events();
assert_eq!(events_4.len(), 0);
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().len(), 1);
assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap()[0].txid(), funding_output.txid);
// Make sure the channel is functioning as though the de/serialization never happened
assert_eq!(nodes[0].node.list_channels().len(), 1);
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_2 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_2[0]);
assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
let (announcement, as_update, bs_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
for node in nodes.iter() {
assert!(node.gossip_sync.handle_channel_announcement(&announcement).unwrap());
node.gossip_sync.handle_channel_update(&as_update).unwrap();
node.gossip_sync.handle_channel_update(&bs_update).unwrap();
}
send_payment(&nodes[0], &[&nodes[1]], 1000000);
}
#[test]
fn test_simple_manager_serialize_deserialize() {
let chanmon_cfgs = create_chanmon_cfgs(2);
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let (our_payment_preimage, _, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
let (_, our_payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 1000000);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
let chan_0_monitor_serialized = get_monitor!(nodes[0], chan_id).encode();
reload_node!(nodes[0], nodes[0].node.encode(), &[&chan_0_monitor_serialized], persister, new_chain_monitor, nodes_0_deserialized);
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
fail_payment(&nodes[0], &[&nodes[1]], our_payment_hash);
claim_payment(&nodes[0], &[&nodes[1]], our_payment_preimage);
}
#[test]
fn test_manager_serialize_deserialize_inconsistent_monitor() {
// Test deserializing a ChannelManager with an out-of-date ChannelMonitor
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let logger: test_utils::TestLogger;
let fee_estimator: test_utils::TestFeeEstimator;
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_0_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let chan_id_2 = create_announced_chan_between_nodes(&nodes, 2, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let (_, _, channel_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
let mut node_0_stale_monitors_serialized = Vec::new();
for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
let mut writer = test_utils::TestVecWriter(Vec::new());
get_monitor!(nodes[0], chan_id_iter).write(&mut writer).unwrap();
node_0_stale_monitors_serialized.push(writer.0);
}
let (our_payment_preimage, _, _) = route_payment(&nodes[2], &[&nodes[0], &nodes[1]], 1000000);
// Serialize the ChannelManager here, but the monitor we keep up-to-date
let nodes_0_serialized = nodes[0].node.encode();
route_payment(&nodes[0], &[&nodes[3]], 1000000);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
nodes[3].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
// Now the ChannelMonitor (which is now out-of-sync with ChannelManager for channel w/
// nodes[3])
let mut node_0_monitors_serialized = Vec::new();
for chan_id_iter in &[chan_id_1, chan_id_2, channel_id] {
node_0_monitors_serialized.push(get_monitor!(nodes[0], chan_id_iter).encode());
}
logger = test_utils::TestLogger::new();
fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
persister = test_utils::TestPersister::new();
let keys_manager = &chanmon_cfgs[0].keys_manager;
new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), &logger, &fee_estimator, &persister, keys_manager);
nodes[0].chain_monitor = &new_chain_monitor;
let mut node_0_stale_monitors = Vec::new();
for serialized in node_0_stale_monitors_serialized.iter() {
let mut read = &serialized[..];
let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, keys_manager).unwrap();
assert!(read.is_empty());
node_0_stale_monitors.push(monitor);
}
let mut node_0_monitors = Vec::new();
for serialized in node_0_monitors_serialized.iter() {
let mut read = &serialized[..];
let (_, monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(&mut read, keys_manager).unwrap();
assert!(read.is_empty());
node_0_monitors.push(monitor);
}
let mut nodes_0_read = &nodes_0_serialized[..];
if let Err(msgs::DecodeError::InvalidValue) =
<(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
default_config: UserConfig::default(),
keys_manager,
fee_estimator: &fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: &logger,
channel_monitors: node_0_stale_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
}) { } else {
panic!("If the monitor(s) are stale, this indicates a bug and we should get an Err return");
};
let mut nodes_0_read = &nodes_0_serialized[..];
let (_, nodes_0_deserialized_tmp) =
<(BlockHash, ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
default_config: UserConfig::default(),
keys_manager,
fee_estimator: &fee_estimator,
chain_monitor: nodes[0].chain_monitor,
tx_broadcaster: nodes[0].tx_broadcaster.clone(),
logger: &logger,
channel_monitors: node_0_monitors.iter_mut().map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect(),
}).unwrap();
nodes_0_deserialized = nodes_0_deserialized_tmp;
assert!(nodes_0_read.is_empty());
{ // Channel close should result in a commitment tx
let txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(txn.len(), 1);
check_spends!(txn[0], funding_tx);
assert_eq!(txn[0].input[0].previous_output.txid, funding_tx.txid());
}
for monitor in node_0_monitors.drain(..) {
assert_eq!(nodes[0].chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor),
ChannelMonitorUpdateStatus::Completed);
check_added_monitors!(nodes[0], 1);
}
nodes[0].node = &nodes_0_deserialized;
check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
// nodes[1] and nodes[2] have no lost state with nodes[0]...
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
reconnect_nodes(&nodes[0], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
//... and we can even still claim the payment!
claim_payment(&nodes[2], &[&nodes[0], &nodes[1]], our_payment_preimage);
nodes[3].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish = get_chan_reestablish_msgs!(nodes[3], nodes[0]).pop().unwrap();
nodes[0].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
nodes[0].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish);
let mut found_err = false;
for msg_event in nodes[0].node.get_and_clear_pending_msg_events() {
if let MessageSendEvent::HandleError { ref action, .. } = msg_event {
match action {
&ErrorAction::SendErrorMessage { ref msg } => {
assert_eq!(msg.channel_id, channel_id);
assert!(!found_err);
found_err = true;
},
_ => panic!("Unexpected event!"),
}
}
}
assert!(found_err);
}
fn do_test_data_loss_protect(reconnect_panicing: bool) {
// When we get a data_loss_protect proving we're behind, we immediately panic as the
// chain::Watch API requirements have been violated (e.g. the user restored from a backup). The
// panic message informs the user they should force-close without broadcasting, which is tested
// if `reconnect_panicing` is not set.
let mut chanmon_cfgs = create_chanmon_cfgs(2);
// We broadcast during Drop because chanmon is out of sync with chanmgr, which would cause a panic
// during signing due to revoked tx
chanmon_cfgs[0].keys_manager.disable_revocation_policy_check = true;
let persister;
let new_chain_monitor;
let nodes_0_deserialized;
let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
let chan = create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 1000000, 1000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
// Cache node A state before any channel update
let previous_node_state = nodes[0].node.encode();
let previous_chain_monitor_state = get_monitor!(nodes[0], chan.2).encode();
send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
send_payment(&nodes[0], &vec!(&nodes[1])[..], 8000000);
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
reload_node!(nodes[0], previous_node_state, &[&previous_chain_monitor_state], persister, new_chain_monitor, nodes_0_deserialized);
if reconnect_panicing {
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[0], nodes[1]);
// Check we close channel detecting A is fallen-behind
// Check that we sent the warning message when we detected that A has fallen behind,
// and give the possibility for A to recover from the warning.
nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &reestablish_1[0]);
let warn_msg = "Peer attempted to reestablish channel with a very old local commitment transaction".to_owned();
assert!(check_warn_msg!(nodes[1], nodes[0].node.get_our_node_id(), chan.2).contains(&warn_msg));
{
let mut node_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().clone();
// The node B should not broadcast the transaction to force close the channel!
assert!(node_txn.is_empty());
}
let reestablish_0 = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
// Check A panics upon seeing proof it has fallen behind.
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &reestablish_0[0]);
return; // By this point we should have panic'ed!
}
nodes[0].node.force_close_without_broadcasting_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
check_added_monitors!(nodes[0], 1);
check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
{
let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap();
assert_eq!(node_txn.len(), 0);
}
for msg in nodes[0].node.get_and_clear_pending_msg_events() {
if let MessageSendEvent::BroadcastChannelUpdate { .. } = msg {
} else if let MessageSendEvent::HandleError { ref action, .. } = msg {
match action {
&ErrorAction::SendErrorMessage { ref msg } => {
assert_eq!(msg.data, "Channel force-closed");
},
_ => panic!("Unexpected event!"),
}
} else {
panic!("Unexpected event {:?}", msg)
}
}
// after the warning message sent by B, we should not able to
// use the channel, or reconnect with success to the channel.
assert!(nodes[0].node.list_usable_channels().is_empty());
nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let retry_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]);
nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &retry_reestablish[0]);
let mut err_msgs_0 = Vec::with_capacity(1);
for msg in nodes[0].node.get_and_clear_pending_msg_events() {
if let MessageSendEvent::HandleError { ref action, .. } = msg {
match action {
&ErrorAction::SendErrorMessage { ref msg } => {
assert_eq!(msg.data, "Failed to find corresponding channel");
err_msgs_0.push(msg.clone());
},
_ => panic!("Unexpected event!"),
}
} else {
panic!("Unexpected event!");
}
}
assert_eq!(err_msgs_0.len(), 1);
nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), &err_msgs_0[0]);
assert!(nodes[1].node.list_usable_channels().is_empty());
check_added_monitors!(nodes[1], 1);
check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_owned() });
check_closed_broadcast!(nodes[1], false);
}
#[test]
#[should_panic]
fn test_data_loss_protect_showing_stale_state_panics() {
do_test_data_loss_protect(true);
}
#[test]
fn test_force_close_without_broadcast() {
do_test_data_loss_protect(false);
}
#[test]
fn test_forwardable_regen() {
// Tests that if we reload a ChannelManager while forwards are pending we will regenerate the
// PendingHTLCsForwardable event automatically, ensuring we don't forget to forward/receive
// HTLCs.
// We test it for both payment receipt and payment forwarding.
let chanmon_cfgs = create_chanmon_cfgs(3);
let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_1_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
let chan_id_1 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
// First send a payment to nodes[1]
let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable_ignore!(nodes[1]);
// Next send a payment which is forwarded by nodes[1]
let (route_2, payment_hash_2, payment_preimage_2, payment_secret_2) = get_route_and_payment_hash!(nodes[0], nodes[2], 200_000);
nodes[0].node.send_payment(&route_2, payment_hash_2, &Some(payment_secret_2), PaymentId(payment_hash_2.0)).unwrap();
check_added_monitors!(nodes[0], 1);
let mut events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
// There is already a PendingHTLCsForwardable event "pending" so another one will not be
// generated
assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
// Now restart nodes[1] and make sure it regenerates a single PendingHTLCsForwardable
nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
let chan_0_monitor_serialized = get_monitor!(nodes[1], chan_id_1).encode();
let chan_1_monitor_serialized = get_monitor!(nodes[1], chan_id_2).encode();
reload_node!(nodes[1], nodes[1].node.encode(), &[&chan_0_monitor_serialized, &chan_1_monitor_serialized], persister, new_chain_monitor, nodes_1_deserialized);
reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
// Note that nodes[1] and nodes[2] resend their channel_ready here since they haven't updated
// the commitment state.
reconnect_nodes(&nodes[1], &nodes[2], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
assert!(nodes[1].node.get_and_clear_pending_msg_events().is_empty());
expect_pending_htlcs_forwardable!(nodes[1]);
expect_payment_received!(nodes[1], payment_hash, payment_secret, 100_000);
check_added_monitors!(nodes[1], 1);
let mut events = nodes[1].node.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
let payment_event = SendEvent::from_event(events.pop().unwrap());
nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &payment_event.msgs[0]);
commitment_signed_dance!(nodes[2], nodes[1], payment_event.commitment_msg, false);
expect_pending_htlcs_forwardable!(nodes[2]);
expect_payment_received!(nodes[2], payment_hash_2, payment_secret_2, 200_000);
claim_payment(&nodes[0], &[&nodes[1]], payment_preimage);
claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage_2);
}
fn do_test_partial_claim_before_restart(persist_both_monitors: bool) {
// Test what happens if a node receives an MPP payment, claims it, but crashes before
// persisting the ChannelManager. If `persist_both_monitors` is false, also crash after only
// updating one of the two channels' ChannelMonitors. As a result, on startup, we'll (a) still
// have the PaymentReceived event, (b) have one (or two) channel(s) that goes on chain with the
// HTLC preimage in them, and (c) optionally have one channel that is live off-chain but does
// not have the preimage tied to the still-pending HTLC.
//
// To get to the correct state, on startup we should propagate the preimage to the
// still-off-chain channel, claiming the HTLC as soon as the peer connects, with the monitor
// receiving the preimage without a state update.
//
// Further, we should generate a `PaymentClaimed` event to inform the user that the payment was
// definitely claimed.
let chanmon_cfgs = create_chanmon_cfgs(4);
let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
let persister: test_utils::TestPersister;
let new_chain_monitor: test_utils::TestChainMonitor;
let nodes_3_deserialized: ChannelManager<&test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
let mut nodes = create_network(4, &node_cfgs, &node_chanmgrs);
create_announced_chan_between_nodes_with_value(&nodes, 0, 1, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features());
create_announced_chan_between_nodes_with_value(&nodes, 0, 2, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features());
let chan_id_persisted = create_announced_chan_between_nodes_with_value(&nodes, 1, 3, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
let chan_id_not_persisted = create_announced_chan_between_nodes_with_value(&nodes, 2, 3, 100_000, 0, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
// Create an MPP route for 15k sats, more than the default htlc-max of 10%
let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 15_000_000);
assert_eq!(route.paths.len(), 2);
route.paths.sort_by(|path_a, _| {
// Sort the path so that the path through nodes[1] comes first
if path_a[0].pubkey == nodes[1].node.get_our_node_id() {
core::cmp::Ordering::Less } else { core::cmp::Ordering::Greater }
});
nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
check_added_monitors!(nodes[0], 2);
// Send the payment through to nodes[3] *without* clearing the PaymentReceived event
let mut send_events = nodes[0].node.get_and_clear_pending_msg_events();
assert_eq!(send_events.len(), 2);
do_pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), send_events[0].clone(), true, false, None);
do_pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 15_000_000, payment_hash, Some(payment_secret), send_events[1].clone(), true, false, None);
// Now that we have an MPP payment pending, get the latest encoded copies of nodes[3]'s
// monitors and ChannelManager, for use later, if we don't want to persist both monitors.
let mut original_monitor = test_utils::TestVecWriter(Vec::new());
if !persist_both_monitors {
for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
if outpoint.to_channel_id() == chan_id_not_persisted {
assert!(original_monitor.0.is_empty());
nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
}
}
}
let original_manager = nodes[3].node.encode();
expect_payment_received!(nodes[3], payment_hash, payment_secret, 15_000_000);
nodes[3].node.claim_funds(payment_preimage);
check_added_monitors!(nodes[3], 2);
expect_payment_claimed!(nodes[3], payment_hash, 15_000_000);
// Now fetch one of the two updated ChannelMonitors from nodes[3], and restart pretending we
// crashed in between the two persistence calls - using one old ChannelMonitor and one new one,
// with the old ChannelManager.
let mut updated_monitor = test_utils::TestVecWriter(Vec::new());
for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
if outpoint.to_channel_id() == chan_id_persisted {
assert!(updated_monitor.0.is_empty());
nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut updated_monitor).unwrap();
}
}
// If `persist_both_monitors` is set, get the second monitor here as well
if persist_both_monitors {
for outpoint in nodes[3].chain_monitor.chain_monitor.list_monitors() {
if outpoint.to_channel_id() == chan_id_not_persisted {
assert!(original_monitor.0.is_empty());
nodes[3].chain_monitor.chain_monitor.get_monitor(outpoint).unwrap().write(&mut original_monitor).unwrap();
}
}
}
// Now restart nodes[3].
reload_node!(nodes[3], original_manager, &[&updated_monitor.0, &original_monitor.0], persister, new_chain_monitor, nodes_3_deserialized);
// On startup the preimage should have been copied into the non-persisted monitor:
assert!(get_monitor!(nodes[3], chan_id_persisted).get_stored_preimages().contains_key(&payment_hash));
assert!(get_monitor!(nodes[3], chan_id_not_persisted).get_stored_preimages().contains_key(&payment_hash));
nodes[1].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
nodes[2].node.peer_disconnected(&nodes[3].node.get_our_node_id(), false);
// During deserialization, we should have closed one channel and broadcast its latest
// commitment transaction. We should also still have the original PaymentReceived event we
// never finished processing.
let events = nodes[3].node.get_and_clear_pending_events();
assert_eq!(events.len(), if persist_both_monitors { 4 } else { 3 });
if let Event::PaymentReceived { amount_msat: 15_000_000, .. } = events[0] { } else { panic!(); }
if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[1] { } else { panic!(); }
if persist_both_monitors {
if let Event::ChannelClosed { reason: ClosureReason::OutdatedChannelManager, .. } = events[2] { } else { panic!(); }
}
// On restart, we should also get a duplicate PaymentClaimed event as we persisted the
// ChannelManager prior to handling the original one.
if let Event::PaymentClaimed { payment_hash: our_payment_hash, amount_msat: 15_000_000, .. } =
events[if persist_both_monitors { 3 } else { 2 }]
{
assert_eq!(payment_hash, our_payment_hash);
} else { panic!(); }
assert_eq!(nodes[3].node.list_channels().len(), if persist_both_monitors { 0 } else { 1 });
if !persist_both_monitors {
// If one of the two channels is still live, reveal the payment preimage over it.
nodes[3].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_1 = get_chan_reestablish_msgs!(nodes[3], nodes[2]);
nodes[2].node.peer_connected(&nodes[3].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
let reestablish_2 = get_chan_reestablish_msgs!(nodes[2], nodes[3]);
nodes[2].node.handle_channel_reestablish(&nodes[3].node.get_our_node_id(), &reestablish_1[0]);
get_event_msg!(nodes[2], MessageSendEvent::SendChannelUpdate, nodes[3].node.get_our_node_id());
assert!(nodes[2].node.get_and_clear_pending_msg_events().is_empty());
nodes[3].node.handle_channel_reestablish(&nodes[2].node.get_our_node_id(), &reestablish_2[0]);
// Once we call `get_and_clear_pending_msg_events` the holding cell is cleared and the HTLC
// claim should fly.
let ds_msgs = nodes[3].node.get_and_clear_pending_msg_events();
check_added_monitors!(nodes[3], 1);
assert_eq!(ds_msgs.len(), 2);
if let MessageSendEvent::SendChannelUpdate { .. } = ds_msgs[1] {} else { panic!(); }
let cs_updates = match ds_msgs[0] {
MessageSendEvent::UpdateHTLCs { ref updates, .. } => {
nodes[2].node.handle_update_fulfill_htlc(&nodes[3].node.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
check_added_monitors!(nodes[2], 1);
let cs_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
expect_payment_forwarded!(nodes[2], nodes[0], nodes[3], Some(1000), false, false);
commitment_signed_dance!(nodes[2], nodes[3], updates.commitment_signed, false, true);
cs_updates
}
_ => panic!(),
};
nodes[0].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &cs_updates.update_fulfill_htlcs[0]);
commitment_signed_dance!(nodes[0], nodes[2], cs_updates.commitment_signed, false, true);
expect_payment_sent!(nodes[0], payment_preimage);
}
}
#[test]
fn test_partial_claim_before_restart() {
do_test_partial_claim_before_restart(false);
do_test_partial_claim_before_restart(true);
}