Merge pull request #348

6466625 Improvements for coordinate decompression (Pieter Wuille)
This commit is contained in:
Pieter Wuille 2015-11-05 01:30:00 +01:00
commit 970164dace
No known key found for this signature in database
GPG Key ID: DBA1A67379A1A931
5 changed files with 94 additions and 5 deletions

View File

@ -87,9 +87,11 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be

View File

@ -29,6 +29,15 @@ SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const
}
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;

View File

@ -43,6 +43,12 @@ typedef struct {
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate
* and a Y coordinate that is a quadratic residue modulo p. The return value
* is true iff a coordinate with the given X coordinate exists.
*/
static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);

View File

@ -165,7 +165,7 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
secp256k1_fe_clear(&r->y);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
@ -173,7 +173,11 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o
r->infinity = 0;
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3);
if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
return secp256k1_fe_sqrt_var(&r->y, &c);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
if (!secp256k1_ge_set_xquad_var(r, x)) {
return 0;
}
secp256k1_fe_normalize_var(&r->y);
@ -181,6 +185,7 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o
secp256k1_fe_negate(&r->y, &r->y, 1);
}
return 1;
}
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {

View File

@ -1420,6 +1420,16 @@ void random_fe(secp256k1_fe *x) {
} while(1);
}
void random_fe_test(secp256k1_fe *x) {
unsigned char bin[32];
do {
secp256k1_rand256_test(bin);
if (secp256k1_fe_set_b32(x, bin)) {
return;
}
} while(1);
}
void random_fe_non_zero(secp256k1_fe *nz) {
int tries = 10;
while (--tries >= 0) {
@ -2038,6 +2048,62 @@ void run_ec_combine(void) {
}
}
void test_group_decompress(const secp256k1_fe* x) {
/* The input itself, normalized. */
secp256k1_fe fex = *x;
secp256k1_fe tmp;
/* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */
secp256k1_ge ge_quad, ge_even, ge_odd;
/* Return values of the above calls. */
int res_quad, res_even, res_odd;
secp256k1_fe_normalize_var(&fex);
res_quad = secp256k1_ge_set_xquad_var(&ge_quad, &fex);
res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0);
res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1);
CHECK(res_quad == res_even);
CHECK(res_quad == res_odd);
if (res_quad) {
secp256k1_fe_normalize_var(&ge_quad.x);
secp256k1_fe_normalize_var(&ge_odd.x);
secp256k1_fe_normalize_var(&ge_even.x);
secp256k1_fe_normalize_var(&ge_quad.y);
secp256k1_fe_normalize_var(&ge_odd.y);
secp256k1_fe_normalize_var(&ge_even.y);
/* No infinity allowed. */
CHECK(!ge_quad.infinity);
CHECK(!ge_even.infinity);
CHECK(!ge_odd.infinity);
/* Check that the x coordinates check out. */
CHECK(secp256k1_fe_equal_var(&ge_quad.x, x));
CHECK(secp256k1_fe_equal_var(&ge_even.x, x));
CHECK(secp256k1_fe_equal_var(&ge_odd.x, x));
/* Check that the Y coordinate result in ge_quad is a square. */
CHECK(secp256k1_fe_sqrt_var(&tmp, &ge_quad.y));
secp256k1_fe_sqr(&tmp, &tmp);
CHECK(secp256k1_fe_equal_var(&tmp, &ge_quad.y));
/* Check odd/even Y in ge_odd, ge_even. */
CHECK(secp256k1_fe_is_odd(&ge_odd.y));
CHECK(!secp256k1_fe_is_odd(&ge_even.y));
}
}
void run_group_decompress(void) {
int i;
for (i = 0; i < count * 4; i++) {
secp256k1_fe fe;
random_fe_test(&fe);
test_group_decompress(&fe);
}
}
/***** ECMULT TESTS *****/
void run_ecmult_chain(void) {
@ -4259,6 +4325,7 @@ int main(int argc, char **argv) {
/* group tests */
run_ge();
run_group_decompress();
/* ecmult tests */
run_wnaf();