From 646662517fb39afa90788392463b1043fd960c35 Mon Sep 17 00:00:00 2001 From: Pieter Wuille Date: Mon, 2 Nov 2015 01:42:53 +0100 Subject: [PATCH] Improvements for coordinate decompression --- src/field.h | 8 +++--- src/field_impl.h | 9 +++++++ src/group.h | 6 +++++ src/group_impl.h | 9 +++++-- src/tests.c | 67 ++++++++++++++++++++++++++++++++++++++++++++++++ 5 files changed, 94 insertions(+), 5 deletions(-) diff --git a/src/field.h b/src/field.h index b49912d2560..2d52af5e366 100644 --- a/src/field.h +++ b/src/field.h @@ -87,9 +87,11 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2 * The output magnitude is 1 (but not guaranteed to be normalized). */ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a); -/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the - * input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be - * normalized). Return value indicates whether a square root was found. */ +/** If a has a square root, it is computed in r and 1 is returned. If a does not + * have a square root, the root of its negation is computed and 0 is returned. + * The input's magnitude can be at most 8. The output magnitude is 1 (but not + * guaranteed to be normalized). The result in r will always be a square + * itself. */ static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a); /** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be diff --git a/src/field_impl.h b/src/field_impl.h index 5781167d4e4..77f4aae2f97 100644 --- a/src/field_impl.h +++ b/src/field_impl.h @@ -29,6 +29,15 @@ SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const } static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) { + /** Given that p is congruent to 3 mod 4, we can compute the square root of + * a mod p as the (p+1)/4'th power of a. + * + * As (p+1)/4 is an even number, it will have the same result for a and for + * (-a). Only one of these two numbers actually has a square root however, + * so we test at the end by squaring and comparing to the input. + * Also because (p+1)/4 is an even number, the computed square root is + * itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)). + */ secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; diff --git a/src/group.h b/src/group.h index 3310af9a71a..ebfe1ca70cc 100644 --- a/src/group.h +++ b/src/group.h @@ -43,6 +43,12 @@ typedef struct { /** Set a group element equal to the point with given X and Y coordinates */ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y); +/** Set a group element (affine) equal to the point with the given X coordinate + * and a Y coordinate that is a quadratic residue modulo p. The return value + * is true iff a coordinate with the given X coordinate exists. + */ +static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x); + /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd); diff --git a/src/group_impl.h b/src/group_impl.h index bb999df3e69..42e2f6e6ebf 100644 --- a/src/group_impl.h +++ b/src/group_impl.h @@ -165,7 +165,7 @@ static void secp256k1_ge_clear(secp256k1_ge *r) { secp256k1_fe_clear(&r->y); } -static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { +static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) { secp256k1_fe x2, x3, c; r->x = *x; secp256k1_fe_sqr(&x2, x); @@ -173,7 +173,11 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o r->infinity = 0; secp256k1_fe_set_int(&c, 7); secp256k1_fe_add(&c, &x3); - if (!secp256k1_fe_sqrt_var(&r->y, &c)) { + return secp256k1_fe_sqrt_var(&r->y, &c); +} + +static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { + if (!secp256k1_ge_set_xquad_var(r, x)) { return 0; } secp256k1_fe_normalize_var(&r->y); @@ -181,6 +185,7 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o secp256k1_fe_negate(&r->y, &r->y, 1); } return 1; + } static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { diff --git a/src/tests.c b/src/tests.c index 7409453c17d..687a5f2fdd8 100644 --- a/src/tests.c +++ b/src/tests.c @@ -1420,6 +1420,16 @@ void random_fe(secp256k1_fe *x) { } while(1); } +void random_fe_test(secp256k1_fe *x) { + unsigned char bin[32]; + do { + secp256k1_rand256_test(bin); + if (secp256k1_fe_set_b32(x, bin)) { + return; + } + } while(1); +} + void random_fe_non_zero(secp256k1_fe *nz) { int tries = 10; while (--tries >= 0) { @@ -2038,6 +2048,62 @@ void run_ec_combine(void) { } } +void test_group_decompress(const secp256k1_fe* x) { + /* The input itself, normalized. */ + secp256k1_fe fex = *x; + secp256k1_fe tmp; + /* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */ + secp256k1_ge ge_quad, ge_even, ge_odd; + /* Return values of the above calls. */ + int res_quad, res_even, res_odd; + + secp256k1_fe_normalize_var(&fex); + + res_quad = secp256k1_ge_set_xquad_var(&ge_quad, &fex); + res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0); + res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1); + + CHECK(res_quad == res_even); + CHECK(res_quad == res_odd); + + if (res_quad) { + secp256k1_fe_normalize_var(&ge_quad.x); + secp256k1_fe_normalize_var(&ge_odd.x); + secp256k1_fe_normalize_var(&ge_even.x); + secp256k1_fe_normalize_var(&ge_quad.y); + secp256k1_fe_normalize_var(&ge_odd.y); + secp256k1_fe_normalize_var(&ge_even.y); + + /* No infinity allowed. */ + CHECK(!ge_quad.infinity); + CHECK(!ge_even.infinity); + CHECK(!ge_odd.infinity); + + /* Check that the x coordinates check out. */ + CHECK(secp256k1_fe_equal_var(&ge_quad.x, x)); + CHECK(secp256k1_fe_equal_var(&ge_even.x, x)); + CHECK(secp256k1_fe_equal_var(&ge_odd.x, x)); + + /* Check that the Y coordinate result in ge_quad is a square. */ + CHECK(secp256k1_fe_sqrt_var(&tmp, &ge_quad.y)); + secp256k1_fe_sqr(&tmp, &tmp); + CHECK(secp256k1_fe_equal_var(&tmp, &ge_quad.y)); + + /* Check odd/even Y in ge_odd, ge_even. */ + CHECK(secp256k1_fe_is_odd(&ge_odd.y)); + CHECK(!secp256k1_fe_is_odd(&ge_even.y)); + } +} + +void run_group_decompress(void) { + int i; + for (i = 0; i < count * 4; i++) { + secp256k1_fe fe; + random_fe_test(&fe); + test_group_decompress(&fe); + } +} + /***** ECMULT TESTS *****/ void run_ecmult_chain(void) { @@ -4259,6 +4325,7 @@ int main(int argc, char **argv) { /* group tests */ run_ge(); + run_group_decompress(); /* ecmult tests */ run_wnaf();