bitcoin/src/key.cpp

485 lines
19 KiB
C++
Raw Normal View History

// Copyright (c) 2009-2022 The Bitcoin Core developers
// Copyright (c) 2017 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <key.h>
#include <crypto/common.h>
#include <crypto/hmac_sha512.h>
#include <hash.h>
#include <random.h>
2014-06-06 01:26:27 +02:00
#include <secp256k1.h>
#include <secp256k1_ellswift.h>
#include <secp256k1_extrakeys.h>
2015-11-11 06:56:19 +01:00
#include <secp256k1_recovery.h>
#include <secp256k1_schnorrsig.h>
static secp256k1_context* secp256k1_context_sign = nullptr;
2015-11-11 06:56:19 +01:00
/** These functions are taken from the libsecp256k1 distribution and are very ugly. */
2017-06-06 07:44:17 +02:00
/**
* This parses a format loosely based on a DER encoding of the ECPrivateKey type from
2020-12-31 03:49:12 +01:00
* section C.4 of SEC 1 <https://www.secg.org/sec1-v2.pdf>, with the following caveats:
2017-06-06 07:44:17 +02:00
*
* * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
* required to be encoded as one octet if it is less than 256, as DER would require.
* * The octet-length of the SEQUENCE must not be greater than the remaining
* length of the key encoding, but need not match it (i.e. the encoding may contain
* junk after the encoded SEQUENCE).
* * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
* * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
* or not it is validly encoded DER.
*
* out32 must point to an output buffer of length at least 32 bytes.
*/
int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
const unsigned char *end = seckey + seckeylen;
2015-11-11 06:56:19 +01:00
memset(out32, 0, 32);
/* sequence header */
if (end - seckey < 1 || *seckey != 0x30u) {
2015-11-11 06:56:19 +01:00
return 0;
}
seckey++;
2015-11-11 06:56:19 +01:00
/* sequence length constructor */
if (end - seckey < 1 || !(*seckey & 0x80u)) {
2015-11-11 06:56:19 +01:00
return 0;
}
ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
2015-11-11 06:56:19 +01:00
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end - seckey < lenb) {
2015-11-11 06:56:19 +01:00
return 0;
}
/* sequence length */
ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
seckey += lenb;
if (end - seckey < len) {
2015-11-11 06:56:19 +01:00
return 0;
}
/* sequence element 0: version number (=1) */
if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
2015-11-11 06:56:19 +01:00
return 0;
}
seckey += 3;
2015-11-11 06:56:19 +01:00
/* sequence element 1: octet string, up to 32 bytes */
if (end - seckey < 2 || seckey[0] != 0x04u) {
2015-11-11 06:56:19 +01:00
return 0;
}
ptrdiff_t oslen = seckey[1];
seckey += 2;
if (oslen > 32 || end - seckey < oslen) {
2015-11-11 06:56:19 +01:00
return 0;
}
memcpy(out32 + (32 - oslen), seckey, oslen);
2015-11-11 06:56:19 +01:00
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
memset(out32, 0, 32);
return 0;
}
return 1;
}
2017-06-06 07:44:17 +02:00
/**
* This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
2020-12-31 03:49:12 +01:00
* <https://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
2017-06-06 07:44:17 +02:00
* included.
*
* seckey must point to an output buffer of length at least CKey::SIZE bytes.
* seckeylen must initially be set to the size of the seckey buffer. Upon return it
* will be set to the number of bytes used in the buffer.
2017-06-06 07:44:17 +02:00
* key32 must point to a 32-byte raw private key.
*/
int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
assert(*seckeylen >= CKey::SIZE);
2015-11-11 06:56:19 +01:00
secp256k1_pubkey pubkey;
size_t pubkeylen = 0;
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
*seckeylen = 0;
2015-11-11 06:56:19 +01:00
return 0;
}
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = seckey;
2015-11-11 06:56:19 +01:00
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = CPubKey::COMPRESSED_SIZE;
2015-11-11 06:56:19 +01:00
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
ptr += pubkeylen;
*seckeylen = ptr - seckey;
assert(*seckeylen == CKey::COMPRESSED_SIZE);
2015-11-11 06:56:19 +01:00
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = seckey;
2015-11-11 06:56:19 +01:00
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = CPubKey::SIZE;
2015-11-11 06:56:19 +01:00
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
ptr += pubkeylen;
*seckeylen = ptr - seckey;
assert(*seckeylen == CKey::SIZE);
2015-11-11 06:56:19 +01:00
}
return 1;
}
bool CKey::Check(const unsigned char *vch) {
2015-11-11 06:56:19 +01:00
return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
}
void CKey::MakeNewKey(bool fCompressedIn) {
MakeKeyData();
do {
GetStrongRandBytes(*keydata);
} while (!Check(keydata->data()));
fCompressed = fCompressedIn;
}
CPrivKey CKey::GetPrivKey() const {
assert(keydata);
CPrivKey seckey;
2015-11-11 06:56:19 +01:00
int ret;
size_t seckeylen;
seckey.resize(SIZE);
seckeylen = SIZE;
ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, UCharCast(begin()), fCompressed);
2014-06-06 01:26:27 +02:00
assert(ret);
seckey.resize(seckeylen);
return seckey;
}
CPubKey CKey::GetPubKey() const {
assert(keydata);
2015-11-11 06:56:19 +01:00
secp256k1_pubkey pubkey;
size_t clen = CPubKey::SIZE;
CPubKey result;
int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, UCharCast(begin()));
2014-06-06 01:26:27 +02:00
assert(ret);
2015-11-11 06:56:19 +01:00
secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
assert(result.size() == clen);
assert(result.IsValid());
return result;
}
// Check that the sig has a low R value and will be less than 71 bytes
bool SigHasLowR(const secp256k1_ecdsa_signature* sig)
{
unsigned char compact_sig[64];
secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);
// In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
// its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
// to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
// our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
return compact_sig[0] < 0x80;
}
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
if (!keydata)
return false;
vchSig.resize(CPubKey::SIGNATURE_SIZE);
size_t nSigLen = CPubKey::SIGNATURE_SIZE;
unsigned char extra_entropy[32] = {0};
WriteLE32(extra_entropy, test_case);
2015-11-11 06:56:19 +01:00
secp256k1_ecdsa_signature sig;
uint32_t counter = 0;
int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
// Grind for low R
while (ret && !SigHasLowR(&sig) && grind) {
WriteLE32(extra_entropy, ++counter);
ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, extra_entropy);
}
assert(ret);
secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);
vchSig.resize(nSigLen);
// Additional verification step to prevent using a potentially corrupted signature
secp256k1_pubkey pk;
ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pk, UCharCast(begin()));
assert(ret);
ret = secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pk);
assert(ret);
return true;
}
bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
if (pubkey.IsCompressed() != fCompressed) {
return false;
}
unsigned char rnd[8];
std::string str = "Bitcoin key verification\n";
2022-01-31 13:29:33 +01:00
GetRandBytes(rnd);
uint256 hash{Hash(str, rnd)};
std::vector<unsigned char> vchSig;
Sign(hash, vchSig);
return pubkey.Verify(hash, vchSig);
}
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!keydata)
return false;
vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
int rec = -1;
secp256k1_ecdsa_recoverable_signature rsig;
int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &rsig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, nullptr);
2015-11-11 06:56:19 +01:00
assert(ret);
ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &rsig);
assert(ret);
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
// Additional verification step to prevent using a potentially corrupted signature
secp256k1_pubkey epk, rpk;
ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &epk, UCharCast(begin()));
assert(ret);
ret = secp256k1_ecdsa_recover(secp256k1_context_static, &rpk, &rsig, hash.begin());
assert(ret);
ret = secp256k1_ec_pubkey_cmp(secp256k1_context_static, &epk, &rpk);
assert(ret == 0);
return true;
}
bool CKey::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const
{
KeyPair kp = ComputeKeyPair(merkle_root);
return kp.SignSchnorr(hash, sig, aux);
}
bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
MakeKeyData();
if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size())) {
ClearKeyData();
return false;
}
fCompressed = vchPubKey.IsCompressed();
2014-06-06 01:26:27 +02:00
if (fSkipCheck)
return true;
2014-06-06 01:26:27 +02:00
return VerifyPubKey(vchPubKey);
}
bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
2013-07-15 01:05:25 +02:00
assert(IsValid());
assert(IsCompressed());
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
2013-07-15 01:05:25 +02:00
if ((nChild >> 31) == 0) {
CPubKey pubkey = GetPubKey();
assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
2013-07-15 01:05:25 +02:00
} else {
assert(size() == 32);
BIP32Hash(cc, nChild, 0, UCharCast(begin()), vout.data());
2013-07-15 01:05:25 +02:00
}
memcpy(ccChild.begin(), vout.data()+32, 32);
keyChild.Set(begin(), begin() + 32, true);
bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
if (!ret) keyChild.ClearKeyData();
2013-07-15 01:05:25 +02:00
return ret;
}
EllSwiftPubKey CKey::EllSwiftCreate(Span<const std::byte> ent32) const
{
assert(keydata);
assert(ent32.size() == 32);
std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey;
auto success = secp256k1_ellswift_create(secp256k1_context_sign,
UCharCast(encoded_pubkey.data()),
keydata->data(),
UCharCast(ent32.data()));
// Should always succeed for valid keys (asserted above).
assert(success);
return {encoded_pubkey};
}
ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const
{
assert(keydata);
ECDHSecret output;
// BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs
// accordingly:
bool success = secp256k1_ellswift_xdh(secp256k1_context_sign,
UCharCast(output.data()),
UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()),
UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()),
keydata->data(),
initiating ? 0 : 1,
secp256k1_ellswift_xdh_hash_function_bip324,
nullptr);
// Should always succeed for valid keys (assert above).
assert(success);
return output;
}
KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const
{
return KeyPair(*this, merkle_root);
}
CKey GenerateRandomKey(bool compressed) noexcept
{
CKey key;
key.MakeNewKey(/*fCompressed=*/compressed);
return key;
}
2016-09-02 18:19:01 +02:00
bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
if (nDepth == std::numeric_limits<unsigned char>::max()) return false;
2013-07-15 01:05:25 +02:00
out.nDepth = nDepth + 1;
CKeyID id = key.GetPubKey().GetID();
memcpy(out.vchFingerprint, &id, 4);
2016-09-02 18:19:01 +02:00
out.nChild = _nChild;
return key.Derive(out.key, out.chaincode, _nChild, chaincode);
2013-07-15 01:05:25 +02:00
}
void CExtKey::SetSeed(Span<const std::byte> seed)
{
static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(UCharCast(seed.data()), seed.size()).Finalize(vout.data());
key.Set(vout.data(), vout.data() + 32, true);
memcpy(chaincode.begin(), vout.data() + 32, 32);
2013-07-15 01:05:25 +02:00
nDepth = 0;
nChild = 0;
memset(vchFingerprint, 0, sizeof(vchFingerprint));
}
CExtPubKey CExtKey::Neuter() const {
CExtPubKey ret;
ret.nDepth = nDepth;
memcpy(ret.vchFingerprint, vchFingerprint, 4);
2013-07-15 01:05:25 +02:00
ret.nChild = nChild;
ret.pubkey = key.GetPubKey();
ret.chaincode = chaincode;
2013-07-15 01:05:25 +02:00
return ret;
}
void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
2013-07-15 01:05:25 +02:00
code[0] = nDepth;
memcpy(code+1, vchFingerprint, 4);
WriteBE32(code+5, nChild);
memcpy(code+9, chaincode.begin(), 32);
2013-07-15 01:05:25 +02:00
code[41] = 0;
assert(key.size() == 32);
memcpy(code+42, key.begin(), 32);
}
void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
2013-07-15 01:05:25 +02:00
nDepth = code[0];
memcpy(vchFingerprint, code+1, 4);
nChild = ReadBE32(code+5);
memcpy(chaincode.begin(), code+9, 32);
key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey();
2013-07-15 01:05:25 +02:00
}
KeyPair::KeyPair(const CKey& key, const uint256* merkle_root)
{
static_assert(std::tuple_size<KeyType>() == sizeof(secp256k1_keypair));
MakeKeyPairData();
auto keypair = reinterpret_cast<secp256k1_keypair*>(m_keypair->data());
bool success = secp256k1_keypair_create(secp256k1_context_sign, keypair, UCharCast(key.data()));
if (success && merkle_root) {
secp256k1_xonly_pubkey pubkey;
unsigned char pubkey_bytes[32];
assert(secp256k1_keypair_xonly_pub(secp256k1_context_sign, &pubkey, nullptr, keypair));
assert(secp256k1_xonly_pubkey_serialize(secp256k1_context_sign, pubkey_bytes, &pubkey));
uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root);
success = secp256k1_keypair_xonly_tweak_add(secp256k1_context_static, keypair, tweak.data());
}
if (!success) ClearKeyPairData();
}
bool KeyPair::SignSchnorr(const uint256& hash, Span<unsigned char> sig, const uint256& aux) const
{
assert(sig.size() == 64);
if (!IsValid()) return false;
auto keypair = reinterpret_cast<const secp256k1_keypair*>(m_keypair->data());
bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), keypair, aux.data());
if (ret) {
// Additional verification step to prevent using a potentially corrupted signature
secp256k1_xonly_pubkey pubkey_verify;
ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, keypair);
ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify);
}
if (!ret) memory_cleanse(sig.data(), sig.size());
return ret;
}
bool ECC_InitSanityCheck() {
CKey key = GenerateRandomKey();
CPubKey pubkey = key.GetPubKey();
return key.VerifyPubKey(pubkey);
}
/** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
static void ECC_Start() {
assert(secp256k1_context_sign == nullptr);
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
assert(ctx != nullptr);
{
// Pass in a random blinding seed to the secp256k1 context.
std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
2022-01-31 13:29:33 +01:00
GetRandBytes(vseed);
bool ret = secp256k1_context_randomize(ctx, vseed.data());
assert(ret);
}
2015-11-11 06:56:19 +01:00
secp256k1_context_sign = ctx;
}
/** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
static void ECC_Stop() {
2015-11-11 06:56:19 +01:00
secp256k1_context *ctx = secp256k1_context_sign;
secp256k1_context_sign = nullptr;
if (ctx) {
secp256k1_context_destroy(ctx);
}
}
ECC_Context::ECC_Context()
{
ECC_Start();
}
ECC_Context::~ECC_Context()
{
ECC_Stop();
}