Currently we loop over `htlcs_to_fail` locking `channel_state` for each
element only to call `get_htlc_inbound_temp_fail_err_and_data` with the
same inputs on each iteration. This is unnecessary, we can refactor and
call `get_htlc_inbound_temp_fail_err_and_data` outside of the loop.
Currently `fail_htlc_backwards_internal` takes ownership of its source
and reason parameters however they are not consumed so we can borrow them.
Includes refactoring to use local variables before the function call.
We create `HTLCFailReason` inline in function calls in a bunch of places
in the `channelmanager` module, we can make the code more terse with no
loss of clarity by implementing a couple of constructor methods.
See ChannelManager::forward_intercepted_htlc and
ChannelManager::get_intercept_scid for details
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
And store the pending intercepted HTLC in pending_intercepted_htlcs
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Used in upcoming commit(s) so users can intercept forwarded HTLCs
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
This is useful for LSPs who wish to create a just-in-time channel for end users
receiving a lightning payment. These fake scids will be encoded into route
hints in end user invoices, and signal to LDK to create an event triggering the
JIT channel, after which the payment will be received.
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
No htlcs are intercepted yet, that will be added in upcoming commit(s)
Co-authored-by: John Cantrell <johncantrell97@gmail.com>
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
At the end of our `monitor_tests`, which test `ChannelMonitor`
`SpendableOutputs` and claimable `Balance`s, add new checks that
ensure that, if we're using the new
`ConnectStyle::HighlyRedundantTransactionsFirstSkippingBlocks`, we
can replay the full chain without getting redundant events or
`Balance`s.
In many complexity-reduced implementations of chain syncing using
esplora `transactions_confirmed` may be called redundantly for
transactions which were already confirmed. To ensure this is
idempotent we add two new `ConnectionStyle`s in our tests which
(a) call `transactions_confirmed` twice for each call, ensuring
simple idempotency is ensured and (b) call `transactions_confirmed`
once for each historical block every time we're connecting a new
block, ensuring we're fully idempotent even if every call is
repeated constantly.
In order to actually behave correctly this requires a simple
already-confirmed check in `ChannelMonitor`, which is included.
If no network graph is provided to the `BackgroundProcessor`, we
log every time the processor loop goes around (at least every
100ms, if not more) which fille up logs with useless indications
that we have no network graph.
For Windows build only, the
`TestPersister::chain_sync_monitor_persistences` lock has a lock order
before the `ChannelManager::per_peer_state` lock. This fix ensures that
the `per_peer_state` lock isn't held before the
`TestPersister::chain_sync_monitor_persistences` lock is acquired.
As the `channel_state` lock will be removed, we prepare for that by
flipping the lock order for `pending_inbound_payments` and
`pending_outbound_payments` locks to before the `channel_state` lock.
Now that `handle_channel_resumption` can't fail, the error handling
in `post_handle_chan_restoration` is now dead code. Removing it
makes `post_handle_chan_restoration` only a single block, so here
we simply remove the macro and inline the single block into the two
places the macro was used.