Currently the base fee we apply is always the expected cost to
claim an HTLC on-chain in case of closure. This results in
significantly higher than market rate fees [1], and doesn't really
match the actual forwarding trust model anyway - as long as
channel counterparties are honest, our HTLCs shouldn't end up
on-chain no matter what the HTLC sender/recipient do.
While some users may wish to use a feerate that implies they will
not lose funds even if they go to chain (assuming no flood-and-loot
style attacks), they should do so by calculating fees themselves;
since they're already charging well above market-rate,
over-estimating some won't have a large impact.
Worse, we current re-calculate fees at forward-time, not based on
the fee we set in the channel_update. This means that the fees
others expect to pay us (and which they calculate their route based
on), is not what we actually want to charge, and that any attempt
to forward through us is inherently race-y.
This commit adds a configuration knob to set the base fee
explicitly, defaulting to 1 sat, which appears to be market-rate
today.
[1] Note that due to an msat-vs-sat bug we currently actually
charge 1000x *less* than the calculated cost.
We had a user who pointed out that we weren't creating
`SpendableOutputs` events when we should have been after they
called `ChannelMonitor::best_block_updated` with a block well
after a CSV locktime and then called
`ChannelMonitor::transactions_confirmed` with the transaction which
we should have been spending (with a block height/hash a ways in
the past).
This was due to `ChannelMonitor::transactions_confirmed` only
calling `ChannelMonitor::block_confirmed` with the height at which
the transactions were confirmed, resulting in all checks being done
against that, not the current height.
Further, in the same scenario, we also would not fail-back and HTLC
where the HTLC-Timeout transaction was confirmed more than
ANTI_REORG_DELAY blocks ago.
To address this, we use the best block height for confirmation
threshold checks in `ChannelMonitor::block_confirmed` and pass both
the confirmation and current heights through to
`OnchainTx::update_claims_view`, using each as appropriate.
Fixes#962.
No matter the context, if we're told about a block which is
guaranteed by our API semantics to be on the best chain, and it has
a higher height than our current understanding of the best chain,
we should update our understanding. This avoids complexity
in `block_confirmed` by never having a height set which is *higher*
than our current best chain, potentially avoiding some bugs in the
rather-complicated code.
It also requires a minor test tweak as we in some cases now no
longer broadcast a conflicting transaction after the original has
reached the ANTI_REORG_DELAY.
There are no visible effects of this, but it seems like good code
hygiene to not call a disconnect function in a different file if no
disconnect happened.
ChannelMonitor and related log entries can generally lean towards
being higher log levels than they necessarily need to be, as they
should be exceedingly rare, if only because they require
confirmation of an on-chain transaction.
Previous to this PR, TLV serialization involved iterating from 0 to the highest
given TLV type. This worked until we decided to implement keysend, which has a
TLV type of ~5.48 billion.
So instead, we now specify the type of whatever is being (de)serialized (which
can be an Option, a Vec type, or a non-Option (specified in the serialization macros as "required").
This stores transaction templates temporarily until their locktime
is reached, avoiding broadcasting (or RBF bumping) transactions
prior to their locktime. For those broadcasting transactions
(potentially indirectly) via Bitcoin Core RPC, this ensures no
automated rebroadcast of transactions on the client side is
required to get transactions confirmed.
This somewhat cleans up the public API of PackageSolvingData to
make it harder to get an invalid amount and use it, adding further
debug assertion to check it at test-time.
Package.rs aims to gather interfaces to communicate between
onchain channel transactions parser (ChannelMonitor) and outputs
claiming logic (OnchainTxHandler). These interfaces are data
structures, generated per-case by ChannelMonitor and consumed
blindly by OnchainTxHandler.
Currently our serialization is very compact, and contains version
numbers to indicate which versions the code can read a given
serialized struct. However, if you want to add a new field without
needlessly breaking the ability of previous versions of the code to
read the struct, there is not a good way to do so.
This adds dummy, currently empty, TLVs to the major structs we
serialize out for users, providing an easy place to put new
optional fields without breaking previous versions.
To avoid caller data struct storing HTLC-related information when
a revokeable output is claimed on top of a commitment/second-stage
HTLC transactions, we split `keysinterface::sign_justice_transaction`
in two new halves `keysinterfaces::sign_justice_revoked_output` and
`keysinterfaces::sign_justice_revoked_htlc`.
Further, this split offers more flexibility to signer policy as a
commitment revokeable output might be of a value far more significant
than HTLC ones.
This increases the CLTV_CLAIM_BUFFER constant to 18, much better
capturing how long it takes to go on chain to claim payments.
This is also more in line with other clients, and the spec, which
sets the default CLTV delay in invoices to 18.
As a side effect, we have to increase MIN_CLTV_EXPIRY_DELTA as
otherwise as are subject to an attack where someone can hold an
HTLC being forwarded long enough that we *also* close the channel
on which we received the HTLC.