The implementation of chain::Listen for ChannelMonitor required using a
RefCell since its block_connected method required a mutable borrow. This
is no longer the case since ChannelMonitor now uses interior mutability
via a Mutex. So the RefCell is no longer needed.
Now that ChannelMonitor uses an internal Mutex to support interior
mutability, ChainMonitor can use a RwLock to manage its ChannelMonitor
map. This allows parallelization of update_channel operations since an
exclusive lock only needs to be held when adding to the map in
watch_channel.
ChainMonitor accesses a set of ChannelMonitors behind a single Mutex.
As a result, update_channel operations cannot be parallelized. It also
requires using a RefCell around a ChannelMonitor when implementing
chain::Listen.
Moving the Mutex into ChannelMonitor avoids these problems and aligns it
better with other interfaces. Note, however, that get_funding_txo and
get_outputs_to_watch now clone the underlying data rather than returning
references.
We currently "support" not having a router or channel in memory by
forcing users to implement the same, but its trivial to provide our
own dummy implementations.
Add a utility for syncing a set of chain listeners to a common chain
tip. Required to use before creating an SpvClient when the chain
listener used with the client is actually a set of listeners each of
which may have had left off at a different block. This would occur when
the listeners had been persisted individually at different frequencies
(e.g., a ChainMonitor's individual ChannelMonitors).
* Implemented protocol.
* Made feature optional.
* Verify that the default value is true.
* Verify that on shutdown,
if Channel.supports_shutdown_anysegwit is enabled,
the script can be a witness program.
* Added a test that verifies that a scriptpubkey
for an unreleased segwit version is handled successfully.
* Added a test that verifies that
if node has op_shutdown_anysegwit disabled,
a scriptpubkey with an unreleased segwit version on shutdown
throws an error.
* Added peer InitFeatures to handle_shutdown
* Check if shutdown script is valid when given upfront.
* Added a test to verify that an invalid test results in error.
* Added a test to check that if a segwit script with version 0 is provided,
the updated anysegwit check detects it and returns unsupported.
* An empty script is only allowed when sent as upfront shutdown script,
so make sure that check is only done for accept/open_channel situations.
* Instead of reimplementing a variant of is_witness_script,
just call it and verify that the witness version is not 0.
The `ChannelKeys` object really isn't about keys at all anymore,
its all about signing. At the same time, we rename the type aliases
used in traits from both `ChanKeySigner` and `Keys` to just
`Signer` (or, in contexts where Channel isnt clear, `ChanSigner`).
This will allow the ChannelManager to signal when it has new
updates to persist, and adds a way for ChannelManager persisters
to be notified when they should re-persist the ChannelManager
to disk/backups.
Feature-gate the wait_timeout function because the core
lightning crate shouldn't depend on wallclock time unless
users opt into it.
Sadly, there's just not really a practical way to map a slice of
objects in our current bindings infrastructure - either we take
ownership of the underlying objects and move them into a Vec, or we
need to leave the original objects in place and have a list of
pointers to the Rust objects. Thus, the only practical mapping is
to create a slice of references using the pointers we have.
`Result` is in the standard prelude, so no need to ever use it.
Sadly, returning a Features<T> in the `impl Futures {}` block
will confuse our new alias-impl-printing logic, as we end up
running through the normal impl-block-printing logic as if we had
an explicit `impl ConcreteFeatures` block.
This adds a utility method, `KeysManager::spend_spendable_outputs`,
which constructs a Transaction from a given set of
`SpendableOutputDescriptor`s, deriving relevant keys as needed.
It also adds methods which can sign individual inputs where
channel-specific key derivation is required to
`InMemoryChannelKeys`, making it easy to sign transaction inputs
when a custom `KeysInterface` is used with `InMemoryChannelKeys`.
Previously, test_dynamic_spendable_outputs_local_htlc_success_tx
called connect_block with two identical transactions, which
resulted in duplicate SpendableOutputs Events back-to-back. This
is a test issue as such a block_connected call represents an
invalid block.
KeyManager::new() took a bitcoin::Network parameter which needs to
be passed to the BIP 32 Extended Key constructor, but because we
never write out the BIP 32 serialization, it isn't used. Instead,
we just pass a dummy value into `ExtendedPrivKey`, dropping the
unused argument to KeysManager::new().
Both SpendableOutputDescriptor::DynamicOutputP2WSH and
SpendableOutputDescriptor::StaticOutputCounterpartyPayment are
relevant only in the context of a given channel, making them
candidates for being passed into helper functions in
`InMemoryChannelKeys`. This moves them into their own structs so
that they can later be used standalone.
We previously counted 35 bytes for a length + public key, but in
reality they are never larger than 34 bytes - 33 for the key and 1
for the push length.
Sadly rust upstream never really figured out the benchmark story,
and it looks like the API we use here may not be long for this
world. Luckily, we can switch to criterion with largely the same
API if that happens before upstream finishes ongoing work with the
custom test framework stuff.
Sadly, it requires fetching the current network graph, which I did
using Val's route-testing script written to test the MPP router.