We add `HTLCHandlingFailedConditions` to express the failure parameters,
that will be enforced by a new macro, `expect_pending_htlcs_forwardable_conditions`.
Adds a HTLCHandlingFailed that expresses failure by our node to process
a specific HTLC. A HTLCDestination enum is defined to express the
possible cases that causes the handling to fail.
ReadOnlyNetworkGraph uses BTreeMap to store its nodes and channels, but
these data structures are not supported by C bindings. Expose look-up
functions on these maps in lieu of such support.
Dependabot has a ton of issues with its rust integration that makes
it wholly useless, and very annoying:
* It has no concept of MSRV, opening PRs that are not going to pass
CI.
* It has no concept of patch-level - if we depend on tokio 1.X,
that means any version of tokio > 1.X, but dependabot insists on
opening a PR to "update us" to tokio 1.X + 1, even though it
doesn't impact what version of our users use (and often violates
MSRV).
* It has no concept of dependencies that rely on each other,
causing it to open a PR to update us to bitcoin_hashes X + 1,
even though we're still depending on rust-bitcoin Y which
depends on bitcoin_hashes X, causing build failure.
* It hogs CI resources, getting CI run twice, once for the branch
once for the PR.
* It creates branches directly on the rust-lightning repo, making
it look like the work is somehow connected to the
lightningdevkit project, even though it isn't, and spamming the
local clones of project contributors.
At the end of the day, dependabot has never meaningfully
contributed to notifying us of an important dependency, and,
really, we don't have enough dependencies for it to matter.
In order to avoid failing to find paths due to the new channel
saturation limit, if we fail to find enough paths, we simply
disable the saturation limit for further path finding iterations.
Because we can now increase the maximum sent over a given channel
during routefinding, we may now generate redundant paths for the
same payment. Because this is wasteful in the network, we add an
additional pass during routefinding to merge redundant paths.
Note that two tests which previously attempted to send exactly the
available liquidity over a channel which charged an absolute fee
need updating - in those cases the router will first collect a path
that is saturation-limited, then attempt to collect a second path
without a saturation limit while stil honoring the existing
utilized capacity on the channel, causing failure as the absolute
fee must be included.
Currently we only opt to split a payment into an MPP if we have
completely and totally used a channel's available capacity (up to
the announced htlc_max or on-chain capacity, whichever is lower).
This is obviously destined to fail as channels are unlikely to have
their full capacity available.
Here we do the minimum viable fix by simply limiting channels to
only using up to a configurable power-of-1/2. We default this new
configuration knob to 1 (1/2 of the channel) so as to avoid a
substantial change but in the future we may consider changing this
to 2 (1/4) or even 3 (1/8).
`LowerBoundedFeeEstimator` is a wrapper for `Deref`s to `FeeEstimator`s
that limits the get_est_sat_per_1000_weight() method to no less than 253
sats/kW.
Because we serialize `Instant`s using wallclock time in
`ProbabilisticScorer`, if time goes backwards across restarts we
may end up with `Instant`s in the future, which causes rustc prior
to 1.60 to panic when calculating durations. Here we simply avoid
this by setting the time to `now` if we get a time in the future.
As the map values are no longer only `channel_id`s, but also a
`counterparty_node_id`s, the map is renamed to better correspond to
whats actually stored in the map.
When we send payment probes, we generate the [`PaymentHash`] based on a
probing cookie secret and a random [`PaymentId`]. This allows us to
discern probes from real payments, without keeping additional state.
Using this field just for MPP doesn't make sense when it could
intuitively also be used to indicate single-path payments. We therefore
rename `max_mpp_path_count` to `max_path_count` and make sure that a
value of 1 ensures MPP is not even tried.
This fixes an insta-panic in `ChannelMonitor` deserialization where
we always `unwrap` a previous value to determine the default value
of a later field. However, because we always ran the `unwrap`
before the previous field is read, we'd always panic.
The fix is rather simple - use a `OptionDeserWrapper` for
`default_value` fields and only fill in the default value if no
value was read while walking the TLV stream.
The only complexity comes from our desire to support
`read_tlv_field` calls that use an explicit field rather than an
`Option` of some sort, which requires some statement which can
assign both an `OptionDeserWrapper<T>` variable and a `T` variable.
We settle on `x = t.into()` and implement `From<T> for
OptionDeserWrapper<T>` which works, though it requires users to
specify types explicitly due to Rust determining expression types
prior to macro execution, completely guessing with no knowlege for
integer expressions (see
https://github.com/rust-lang/rust/issues/91369).
A user might want to explicitly penalize or prioritize a particular
node. We now allow them to do so by specifying a manual penalty
override for a given node that is then returned by the scorer.
In c02b6a3807 we moved the
`payment_preimage` copy from inside the macro which only runs if we
are spending an output we know is an HTLC output to doing it for
any script that matches our expected length. This can panic if an
inbound channel is created with a bogus funding transaction that
has a witness program of the HTLC-Success/-Offered length but which
does not have a second-to-last witness element which is 32 bytes.
Luckily this panic is relatively simple for downstream users to
work around - if an invalid-length-copy panic occurs, simply remove
the ChannelMonitor from the bogus channel on startup and run
without it. Because the channel must be funded by a bogus script in
order to reach this panic, the channel will already have closed by
the time the funding transaction is spent, and there can be no
local funds in such a channel, so removing the `ChannelMonitor`
wholesale is completely safe.
In order to test this we have to disable an in-line assertion that
checks that our transactions match expected scripts which we do by
checking for the specific bogus script that we now use in
`test_invalid_funding_tx`.
Thanks to Eugene Siegel for reporting this issue.
Because downstream languages are often garbage-collected, having
the user directly allocate a `ReadOnlyNetworkGraph` and pass a
reference to it to `find_route` often results in holding a read
lock long in excess of the `find_route` call. Worse, some languages
(like JavaScript) tend to only garbage collect when other code is
not running, possibly leading to deadlocks.