We currently copy the features objects in each channel as we walk
the graph during route calculation. This implies a significant
amount of malloc traffic as the features flags object are stored
on the heap.
Instead, because they features being referenced are in the network
graph which we hold a reference to, we can simply store references
to them.
This nontrivially improves our get_route benchmark by around 5%.
While walking the graph doing Dijkstra's, we may decrease the
amount being sent along one path, and not others, based on the
htlc_minimum_msat value. This may result in a lower relative fees
on that path in comparison to others. In the extreme, this may
result in finding a second path to a node with a lower fee than the
first path found (normally impossible in a Dijkstra's
implementation, as we walk next hops in fee-order).
In such a case, we end up with parts of our state invalid as
further hops beyond that node have been filled in using the
original total fee information.
Instead, we simply track which nodes have been processed and ignore
and further updates to them (as it implies we've reduced the amount
we're sending to find a lower absolute fee, but a higher relative
fee, which isn't a better route).
We check that we are in exactly this case in test builds with new
in-line assertions. Note that these assertions successfully detect
the bug in the previous commit.
Sadly this requires an extra HashMap lookup every time we pop an
element off of our heap, though we can skip a number of heap pushes
during the channel walking.
This is the same code as was recently failing in our benchmarks,
adapted to use a random starting seed instead of a fixed one and
a smaller iteration to reduce runtime.
When walking the network graph to calculate a route, we always
calculate the minimum fee which is required to make one further
hop. This avoids some extra hop processing at the end of each path
selection loop (saving around 10% runtime in our benchmarks).
However, if we use the real value which we expect
to send over a channel in that calculation, we may find an
alternate path to the same node which is more expensive but
capacity-constrained, resulting in us considering it cheaper as the
relative fee paid will be lower.
Instead, we can use the `minimal_value_contribution_msat`, which is
a constant through an entire path finding iteration, as the amount,
preventing any basis change in the relative fee paid.
Currently, the "best source" for a given node tracked during
Dijkstra's is updated with a different critera from the heap
sorting, resulting in loops in calculated paths.
This adds a test for the specific failure currently seen, utilizing
the new path-htlc-minimum tracking in the heap entries in place of
the per-hop htlc-minimum values which the MPP changeset partially
used.
If we walk the network graph and find a route that meets are
payment amount and has a liquidiy limit far in excess of our
payment amount, we may select the same path several times in the
main path-gathering loop.
Instead, if the path we selected was not limited by the available
liquidity, we set the middle hop in the path's liquidity available
to zero, disabling that channel in future path finding steps.
Previously, we'd happily send funds through a path where, while
generating the path, in some middle hope we reduce the value being
sent to meet an htlc_maximum, making a later hop invalid due to it
no longer meeting its htlc_minimum. Instead, we need to track the
path's htlc-minimum while we're transiting the graph.
The new MPP routing algorithm attempts to build paths with a higher
value than our payment to find paths which may allow us to pay a
fee to meet an htlc_minimum limit. This is great if we're
min-bounded, however it results in us rejecting paths where we are
bounded by a maximum near the end of the path, with fees, and then
bounded by a minimum earlier in the path. Further, it means we will
not find the cheapest path where paths have a lower relative fee
but a higher absolute fee.
Instead, we calculate routes using the actual amount we wish to
send. To maintain the previous behavior of searching for cheaper
paths where we can "pay the difference" to meet an htlc_minimum, we
detect if we were minimum-bounded during graph walking and, if we
are, we walk the graph again with a higher value.
This expands the assertions on block ordering to apply to
`#[cfg(test)]` builds in addition to normal builds, requiring that
unit and functional tests have syntactically-valid (ie the previous
block hash pointer and the heights match the blocks) blockchains.
This requires a reasonably nontrivial diff in the functional tests
however it is mostly straightforward changes.
Many functional tests rely on being able to call block_connected
arbitrarily, jumping back in time to confirm a transaction at a
specific height. Instead, this takes us one step towards having a
well-formed blockchain in the functional tests.
We also take this opportunity to reduce the number of blocks
connected during tests, requiring a number of constant tweaks in
various functional tests.
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Co-authored-by: Matt Corallo <git@bluematt.me>
Sadly the connected-in-order tests have to be skipped in our normal
test suite as many tests violate it. Luckily we can still enforce
it in the tests which run in other crates.
Co-authored-by: Matt Corallo <git@bluematt.me>
Co-authored-by: Jeffrey Czyz <jkczyz@gmail.com>
In some PRs, codecov gets mad that the coverage of the patch itself
is lower than the base. In most cases, we largely don't want a Big
Red X, at least as long as the total coverage has not gone down
substantially.
We allow users to configure the to_self_delay, which is analogous to
the cltv_expiry_delta in terms of its security context, so we should
allow users to specify both.
We similarly bound it on the lower end, but reduce that bound
somewhat now that it is configurable.
Relative HTML doc paths in doc links works locally, but breaks on
crates.io. Luckily, we can now use explicit full paths and rustdoc
will resolve them for us.
Useful for constructing route hints for private channels in invoices.
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Co-authored-by: Antoine Riard <ariard@student.42.fr>
This will be used to expose forwarding info for route hints in the next commit.
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Co-authored-by: Antoine Riard <ariard@student.42.fr>
This will be filled in in upcoming commits, then exposed in ChannelDetails
to allow constructing route hints for invoices.
Also update the cltv_expiry_deta comment in msgs::ChannelUpdate
Co-authored-by: Valentine Wallace <vwallace@protonmail.com>
Co-authored-by: Antoine Riard <ariard@student.42.fr>
Modify NetGraphMsgHandler::handle_query_channel_range to always use
first_blocknum=0 in replies. This is spec compliant after changes to
make sequence completion explicity using sync_complete.
Modifies NetGraphMsgHandler::handle_query_channel_range to use a constant
max value in replies. Modifies tests to generate 8000 channels instead
of making this value configurable.