In any place where fail_htlc_backwards_internal was called for a phantom payment
failure, we weren't encoding the onion failure as if the phantom were the one
failing. Instead, we were encoding the failure as if it were coming from the
second-to-last hop. This caused our failures to not be parsed properly on the
payer's side.
Places we were encoding failures incorrectly include:
* on failure of a call to inbound_payment::verify
* on a user call to fail_htlc_backwards
Also drop some unnecessary panics when reading OnionHopData objects. This also
enables one of the phantom failure tests because we can construct OnionHopDatas
with invalid amounts.
Lastly, remove a bogus comment
This also fixes a bug where we were failing back phantom payments with the
wrong scid, causing them to never actually be failed backwards (L3022 in
channelmanager.rs)
This new field will be used in upcoming commit(s) to encrypt phantom payment failure
packets.
To support the feature of generating invoices that can be paid to any of
multiple nodes, a key manager need to be able to share an inbound_payment_key
and phantom secret key. This is because a phantom payment may be received by
any node participating in the invoice, so all nodes must be able to decrypt the
phantom payment (and therefore must share decryption key(s)) in the act of
pretending to be the phantom node. Thus we add a new `PhantomKeysManager` that
supports these features.
To be more specific, the inbound payment key must be shared because it is used
to decrypt the payment details for verification (LDK avoids storing inbound
payment data by encrypting payment metadata in the payment hash and/or payment
secret).
The phantom secret must be shared because enables any real node included in the
phantom invoice to decrypt the final layer of the onion packet, since the onion
is encrypted by the sender using the phantom public key provided in the
invoice.
Add functional tests for manually responding to inbound channel requests.
Responding to inbound channel requests are required when the
`manually_accept_inbound_channels` config flag is set to true.
The tests cover the following cases:
* Accepting an inbound channel request
* Rejecting an inbound channel request
* FundingCreated message sent by the counterparty before accepting the
inbound channel request
* Attempting to accept an inbound channel request twice
* Attempting to accept an unkown inbound channel
Add a new config flag `UserConfig::manually_accept_inbound_channels`,
which when set to true allows the node operator to accept or reject new
channel requests.
When set to true, `Event::OpenChannelRequest` will be triggered once a
request to open a new inbound channel is received. When accepting the
request, `ChannelManager::accept_inbound_channel` should be called.
Rejecting the request is done through
`ChannelManager::force_close_channel`.
`cargo bench` sets `cfg(test)`, causing us to hit some test-only
code in the router when benchmarking, throwing off our benchmarks
substantially. Here we swap from the `unstable` feature to a more
clearly internal feature (`_bench_unstable`) and also checking for
it when enabling test-only code.
Given the balance is reported as "total balance if we went to chain
ignoring fees", it seems reasonable to include claimed HTLCs - if
we went to chain we'd get those funds, less on-chain fees. Further,
if we do not include them, its possible to have pending outbound
holding-cell HTLCs underflow the balance calculation, causing a
panic in debug mode, and bogus values in release.
This resolves a subtraction underflow bug found by the
`chanmon_consistency` fuzz target.
Apparently rustc doesn't (actually) provide any kind of
compilation-stability guarantees, despite their claims. Here we
work around rustc being unstable by making the trait call explicit.
See also https://github.com/rust-lang/rust/issues/93599
ProbabilisticScorer uses successful and unsuccessful payments to gain
more certainty of a channel's liquidity balance. Decay this knowledge
over time to indicate decreasing certainty about the liquidity balance.
Add a Score implementation based on "Optimally Reliable & Cheap Payment
Flows on the Lightning Network" by Rene Pickhardt and Stefan Richter[1].
Given the uncertainty of channel liquidity balances, probability
distributions are defined based on knowledge learned from successful and
unsuccessful attempts. Then the negative log of the success probability
is used to determine the cost of routing a specific HTLC amount through
a channel.
[1]: https://arxiv.org/abs/2107.05322
A channel's capacity may be inferred or learned and is used to make
routing decisions, including as a parameter to channel scoring. Define
an EffectiveCapacity for this purpose. Score::channel_penalty_msat takes
the effective capacity (less in-flight HTLCs for the same payment), and
never None. Thus, for hops given in an invoice, the effective capacity
is now considered (near) infinite if over a private channel or based on
learned information if over a public channel.
If a Score implementations needs the effective capacity when updating a
channel's score, i.e. in payment_path_failed or payment_path_successful,
it can access the channel's EffectiveCapacity via the NetworkGraph by
first looking up the channel and then specifying which direction is
desired using ChannelInfo::as_directed.
We currently allow users to provide an `override_config` in
`ChannelManager::create_channel` which it seems should apply to the
channel. However, because we don't store any of it, the only parts
which we apply to the channel are those which are set in the
`Channel` object immediately in `Channel::new_outbound` and used
from there.
This is great in most cases, however the
`UserConfig::peer_channel_config_limits` `ChannelHandshakeLimits`
object is used in `accept_channel` to bound what is acceptable in
our peer's `AcceptChannel` message. Thus, for outbound channels, we
are given a full `UserConfig` object to "override" the default
config, but we don't use any of the handshake limits specified in
it.
Here, we move to storing the `ChannelHandshakeLimits` explicitly
and applying it when we receive our peer's `AcceptChannel`. Note
that we don't need to store it anywhere because if we haven't
received an `AcceptChannel` from our peer when we reload from disk
we will forget the channel entirely anyway.
Channel::get_announcement_sigs is only used in contexts where we
have a logger already, and the error returned is always ignored, so
instead of returning an ignored error message we return an `Option`
directly and log when it won't be too verbose.
The spec actually requires we never send `announcement_signatures`
(and, thus, `channel_announcement`s) until after six confirmations.
However, we would happily have sent them prior to that as long as
we exchange `funding_locked` messages with our countarparty. Thanks
to re-broadcasting this issue is largely harmless, however it could
have some negative interactions with less-robust peers. Much more
importantly, this represents an important step towards supporting
0-conf channels, where `funding_locked` messages may be exchanged
before we even have an SCID to construct the messages with.
Because there is no ACK mechanism for `announcement_signatures` we
rely on existing channel updates to stop rebroadcasting them - if
we sent a `commitment_signed` after an `announcement_signatures`
and later receive a `revoke_and_ack`, we know our counterparty also
received our `announcement_signatures`. This may resolve some rare
edge-cases where we send a `funding_locked` which our counterparty
receives, but lose connection before the `announcement_signatures`
(usually the very next message) arrives.
Sadly, because the set of places where an `announcement_signatures`
may now be generated more closely mirrors where `funding_locked`
messages may be generated, but they are now separate, there is a
substantial amount of code motion providing relevant parameters
about current block information and ensuring we can return new
`announcement_signatures` messages.
If we have not yet sent `funding_locked` only because of a pending
channel monitor update, we shouldn't consider a channel
`is_usable`. This has a number of downstream effects, including
not attempting to route payments through the channel, not sending
private `channel_update` messages to our counterparty, or sending
channel_announcement messages if our couterparty has already signed
for it.
We further gate generation of `node_announcement`s on `is_usable`,
preventing generation of those or `announcement_signatures` until
we've sent our `funding_locked`.
Finally, `during_funding_monitor_fail` is updated to test a case
where we see the funding transaction lock in but have a pending
monitor update failure, then receive `funding_locked` from our
counterparty and ensure we don't generate the above messages until
after the monitor update completes.
While its generally harmless to do so (the messages will simply be
dropped in `PeerManager`) there is a potential race condition where
the FundingLocked message enters the outbound message queue, then
the peer reconnects, and then the FundingLocked message is
delivered prior to the normal ChannelReestablish flow.
We also take this opportunity to rewrite
`test_funding_peer_disconnect` to be explicit instead of using
`reconnect_peers`. This allows it to check each message being sent
carefully, whereas `reconnect_peers` is rather lazy and accepts
that sometimes signatures will be exchanged, and sometimes not.