Introduce two wrapper types for our existing SphinxErrorEncrypter
that are used to represent error encrypters where we're a part of a
blinded route. These encrypters are functionally the same as a sphinx
encrypter, and are just used as "markers" so that we know that we
need to handle our error differently due to our different role.
We need to persist this information to account for restart cases where
we've resovled the outgoing HTLC, then restart and need to handle the
error for the incoming link. Specifically, this is relevant for:
- On chain resolution messages received after restart
- Forwarding packages that are re-forwarded after restart
This is also generally helpful, because we can store this information
in one place (the circuit) rather than trying to reconstruct it in
various places when forwarding the failure back over the switch.
We need to know what role we're playing to be able to handle errors
correctly, but the information that we need for this is held by our
iterator:
- Whether we had a blinding point in update add (blinding kit)
- Whether we had a blinding point in payload
As we're now going to use the route role return value even when our
err!=nil, we rename the error to signal that we're using less
canonical golang here.
An alternative to this approach is to attach a RouteRole to our
ErrInvalidPayload. The downside of that approach is:
- Propagate context through parsing (whether we had updateAddHtlc)
- Clumsy handling for errors that are not of type ErrInvalidPayload
When handling blinded errors, we need to know whether there was a
blinding key in our payload when we successfully parsed our payload
but then found an invalid set of fields. The combination of
parsing and validation in NewPayloadFromReader means that we don't know
whether a blinding point was available to us by the time the error is
returned.
This commit splits parsing and validation into two functions so that
we can take a look at what we actually pulled of the payload in between
parsing and TLV validation.
This commit moves all our validation related to the presence of fields
into ValidateParsedPayloadTypes so that we can handle them in a single
place. We draw the distinction between:
- Validation of the payload (and the context within it's being parsed,
final hop / blinded hop etc)
- Processing and validation of encrypted data, where we perform
additional cryptographic operations and validate that the fields
contained in the blob are valid.
This helps draw the line more clearly between the two validation types,
rather than splitting some payload-releated blinded hop processing
into the encrypted data processing part. The downside of this approach
(vs doing the blinded path payload check _after_ payload validation)
is that we have to pass additional context into payload validation
(ie, whether we got a blinding point in our UpdateAddHtlc - as we
already do for isFinalHop).
This commit adds handling for malformed HTLC errors related to blinded
paths. We expect to receive these errors _within_ a blinded path,
because all non-introduction nodes are instructed to return malformed
errors for failures.
Note that we may actually switch back to a malformed error later on if
we too are a relaying node in the route, but we handle that case the
incoming link.
This commit changes how we transform from a deadline option to a
concrete deadline value - previously this is done when we decide to
cluster inputs, and we now move it to a step earlier - once an input is
received via `SweeperInput`, we will immediately transform its optional
deadline into a real value. For inputs that come with a deadline option,
since the Some will be used, it makes no difference. For inputs with
None as their deadlines, we need this change to make sure the default
deadlines are assigned accurately.
This commit adds a test case to check the no deadline sweeping behavior.
The sweeper is updated to make sure it can handle the case for neutrino
backend.