In order to reduce the number of calls to the db we try to process as
few channels as we can + try to not do extra work for each of them.
- First fetch all the channels. Then, filter all the public ones and
sort the potential candidates by remote balance.
- Filter out each potential candidate as soon as possible.
- Only check the alias if the channel supports scid aliases.
- Because we sort the channels by remote balance, we will hit the
target amount, if possible, as soon as we can.
We do not want to leak information about our remote balances, so we
shuffle the hop hints (the forced ones go always first) so the invoice
receiver does not know which channels have more balance than others.
In this commit, we add awareness of the option_shutdown_anysegwit that
permits both sides to send newer segwit based addresses. This'll
eventually enable us to send taproot addresses for co-op close.
This defines the zero-conf feature bit, the scid-alias feature bit,
the zero-conf channel type, and the scid-alias channel type. It also
defines the dependency "tree" that exists for the feature bits.
The scid-alias feature bit signals that the node requires an alias
short channel id to be sent in funding_locked. The scid-alias channel
type requires that the channel is private, in addition to some other
forwarding-related privacy measures.
This commit adds Warning messages to lnwire, as introduced in bolts/950.
It does not include reading/writing of warning messages, which will be
covered in followup commits.
Instead of erroring out with encountering an address with an unknown
type, we just store the remainder of the addrBytes as OpaqueAddrs so
that we are able to rewrite them to the wire when we re-propagate the
message.
In this commit, a new net.Addr implementation called OpaqueAddrs is
added along with a WriteOpaqueAddrs func that is called in
WriteNetAddrs. It will be used to store any address bytes that we cannot
parse due to us not being aware of the address type.
Add a test to demonstrate that if a NodeAnnouncement includes an address
with an unknown type, then we incorrectly return an error. This will be
fixed in the following commit.
This commit was previously split into the following parts to ease
review:
- 2d746f68: replace imports
- 4008f0fd: use ecdsa.Signature
- 849e33d1: remove btcec.S256()
- b8f6ebbd: use v2 library correctly
- fa80bca9: bump go modules
This was not properly enforced and would be a spec violation on the
peer's end. Also re-use a pong buffer to save on heap allocations if
there are a lot of peers. The pong buffer is only read from, so this
is concurrent safe.
To simplify the message signing API even further, we refactor the
lnwallet.MessageSigner interface to use a key locator instead of the
public key to identify which key should be signed with.
If these bits are present, then both sides can examine the new
CommitmentType TLV field that's present and use this in place of the
existing implicit commiment type negotiation. With this change, it's now
possible to actually deprecate old unsupported commitment types
properly.
In this commit, we add a new ChannelType field as a new TLV record to
the OpenChannel message. During this change, we make a few tweaks to the
generic TLV encode/decode methods for the ExtraOpaqueData struct to have
it work on the level of tlv.RecordProducer instead of tlv.Record, as
this reduces line noise a bit.
We also partially undo existing logic that would attempt to "prepend"
any new TLV records to the end of the ExtraOpaqueData if one was already
present within the struct. This is based on the assumption that if we've
read a message from disk to order to re-send/transmit it, then the
ExtraOpaqueData is fully populated so we'll write that as is. Otherwise,
a message is being encoded for the first time, and we expect all fields
that are known TLV fields to be specified within the struct itself.
This change required the unit tests to be modified slightly, as we'll
always encode a fresh set of TLV records if none was already specified
within the struct.
In this commit, we add a new TLV record that's intended to be used as an
explicit channel commitment type for a new form of funding negotiation,
and later on a dynamic commitment upgrade protocol. As defined, we have
3 channel types: base (the OG), tweakless, and anchors w/ zero fee
HTLCs. We omit the original variant of anchors as it was never truly
deployed from the PoV of lnd.
This commit refactors the remaining usage of WriteElements. By
replacing the interface types with concrete types for the params used in
the methods, most of the encoding of the messages now takes zero heap
allocations.
This commit changes the WriteElement and WriteElements methods to take a
write buffer instead of io.Writer. The corresponding Encode methods are
changed to use the write buffer.
This commit changes the method WriteMessage to use bytes.Buffer to save
heap allocations. A unit test is added to check the method is
implemented as expected.