With go 1.17 a change to the build flags was implemented:
https://go.googlesource.com/proposal/+/master/design/draft-gobuild.md
The formatter now automatically adds the forward-compatible build tag
format and the linter checks for them, so we need to include them in our
code.
As a preparation for the migration to the grpc-gateway/v2 library we
declare each service's REST annotations in its own file. This is
optional in the v1 library but mandatory in v2.
In order to be able to register the subservers with the root grpc server
before we have all dependencies available, we wrap them in an
GrpcHandler struct. This struct will initially hold an empty reference
to the subservers, which allows us to register with the GRPC server, and
later populate and create the subserver instance.
This will prevent the subservers from writing macaroons to disk
when the stateless_init flag is set to true. It accomplishes
this by storing the StatelessInit value in the Macaroon Service.
This is meant to handle a quirk in which key descriptors obtained
through walletrpc.DeriveKey don't result in the derived key being
persisted to the wallet's database, unlike with DeriveNextKey. Due to
this and some fallback logic in the wallet with regards to empty key
locators, if a request only specified the compressed public key, the
signature returned would be over a different key, namely the one derived
from (family=0, index=0).
This commit introduces a new test case that asserts all of the witness
size constants currently in the codebase. We also reintroduce the
AcceptedHtlcSuccessWitnessSize and OfferedHtlcTimeoutWitnessSize
constants that were recently removed for the sake of completeness.
In asserting the witnes sizes, there were three uncovered discrepancies:
* OfferedHtlcSuccessWitnessSize overestimated by about 30% because it
included an extra signature in the calculation.
* ToLocalPenaltyWitnessSize was underestimated by one byte, because it
was missing the length byte for the OP_TRUE. This has implications
the watchtower protocol since the client and server are assumed to
share the same weight estimates used for signing. This commit keeps
the current behavior, with the intention of rolling out negotiation
for which weight estimate to use for a given session.
* AcceptedHtlcScriptSize was underestimated by one byte because it was
missing a length byte for the value 32 pushed on the stack when
asserting the preimage's length. This affects all AcceptedHtlc*
witness sizes.
With this commit we add the ability to create a shared DH key by using
a custom node private key instead of the node's identity private key.
If no key locator is specified the node's identity private key will be
used as a fallback.
To allow signing of messages with any key in the key chain
we add two new methods to the signer RPC. These behave differently
to the methods with the same name in the main RPC as described
in the documentation comment.
This commit upgrades the protobuf version. Compared to the previous
v1.2.0 it generates smaller diffs in generated code. This change was
introduced in:
fffb0f7828
This commit is a step to split the lnwallet package. It puts the Input
interface and implementations in a separate package along with all their
dependencies from lnwallet.
In this commit, we add a new sub-RPC server to the existing set of gRPC
servers. This new sub-RPC server is the WalletKit. It's a utility
toolkit that contains method which allow clients to perform common
interactions with a wallet such as getting a new address, or sending a
transaction. It also includes some supplementary actions such as fee
estimation.
One thing to note in the RPC file is that we _import_ the existing
signer.proto file in order to get at some existing proto definitions
which are useful in our use case.
In this commit, we add the ComputeInputScript which will allow callers
to obtain witnesses for all outputs under control of the wallet. This
allows external scripting of things like coin join, etc.
In this commit, we add the glue infrastructure to make the sub RPC
server system work properly. Our high level goal is the following: using
only the lnrpc package (with no visibility into the sub RPC servers),
the RPC server is able to find, create, run, and manage the entire set
of present and future sub RPC servers. In order to achieve this, we use
the reflect package and build tags heavily to permit a loosely coupled
configuration parsing system for the sub RPC servers.
We start with a new `subRpcServerConfigs` struct which is _always_
present. This struct has its own group, and will house a series of
sub-configs, one for each sub RPC server. Each sub-config is actually
gated behind a build flag, and can be used to allow users on the command
line or in the config to specify arguments related to the sub-server. If
the config isn't present, then we don't attempt to parse it at all, if
it is, then that means the RPC server has been registered, and we should
parse the contents of its config.
The `subRpcServerConfigs` struct has two main methods:
`PopulateDependancies` and `FetchConfig`. The `PopulateDependancies` is
used to dynamically locate and set the config fields for each new
sub-server. As the config may not actually have any fields (if the build
flag is off), we use the reflect pacakge to determine if things are
compiled in or not, then if so, we dynamically set each of the config
parameters. The `PopulateDependancies` method implements the
`lnrpc.SubServerConfigDispatcher` interface. Our goal is to allow sub
servers to look up their actual config in this main config struct. We
achieve this by using reflect to look up the target field _as if it were
a key in a map_. If the field is found, then we check if it has any
actual attributes (it won't if the build flag is off), if it is, then we
return it as we expect it to be populated already.
In this commit, we create a lnrpc.SubServerDriver for signrpc. Note that
this file will only have its init() method executed if the proper build
flag is on. As a result, only if the build flag is set, will the RPC
server be registered, and visible at the packge lnrpc level for the root
server to manipulate.
In this commit, we add a full implementation of the new SignerServer sub
RPC service within the main root RPC service. This service is able to
fully manage its macaroons, and service any connected clients. Atm, this
service only has a single method: SignOutputRaw which mimics the
existing lnwallet.Signer interface within lnd itself. As the API's are
so similar, it will be possible for a client to directly use the
lnwallet.Signer interface, and have a proxy that sends the request over
RPC, and translates the proto layer on both sides. To the client, it
doesn't know that it's using a remote, or local RPC.
In this commit, we add a new proto generation script to match the one in
the main lnrpc package. This script differs, as we don't need to
generate the REST proxy stuff (for now).
In this commit, we introduce a new sub-package within the greater RPC
package. This new sub-package will house a new set of sub-RPC servers
to expose experimental features behind build flags for upstream
consumers. In this commit, we add the first config for the service,
which will simply expose the lnwallet.Signer interface over RPC.
In the default file, we have what the config will be if the build tag
(signerrpc) is off. In this case, the config parser won't detect any
times, and if specified will error out. In the active file, we have the
true config that the server will use. With this new set up, we'll
exploit these build flags heavily in order to create a generalized
framework for adding additional sub RPC servers.