2022-03-18 18:37:46 +01:00
|
|
|
package itest
|
|
|
|
|
|
|
|
import (
|
2022-03-18 18:37:50 +01:00
|
|
|
"bytes"
|
2022-03-18 18:37:46 +01:00
|
|
|
"context"
|
2022-03-18 18:37:51 +01:00
|
|
|
"crypto/sha256"
|
2022-03-18 18:37:50 +01:00
|
|
|
"encoding/hex"
|
|
|
|
"testing"
|
2022-03-18 18:37:46 +01:00
|
|
|
|
2022-03-18 18:37:50 +01:00
|
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
|
|
"github.com/btcsuite/btcd/btcec/v2"
|
|
|
|
"github.com/btcsuite/btcd/btcec/v2/schnorr"
|
2022-03-18 18:37:46 +01:00
|
|
|
"github.com/btcsuite/btcd/btcutil"
|
2022-03-18 18:37:50 +01:00
|
|
|
"github.com/btcsuite/btcd/txscript"
|
|
|
|
"github.com/btcsuite/btcd/wire"
|
|
|
|
"github.com/lightningnetwork/lnd/input"
|
2022-03-18 18:37:46 +01:00
|
|
|
"github.com/lightningnetwork/lnd/lnrpc"
|
2022-03-18 18:37:52 +01:00
|
|
|
"github.com/lightningnetwork/lnd/lnrpc/chainrpc"
|
2022-03-18 18:37:50 +01:00
|
|
|
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
|
|
|
|
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
|
2022-03-18 18:37:46 +01:00
|
|
|
"github.com/lightningnetwork/lnd/lntest"
|
2022-03-18 18:37:50 +01:00
|
|
|
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
2022-03-18 18:37:46 +01:00
|
|
|
"github.com/stretchr/testify/require"
|
|
|
|
)
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
const (
|
|
|
|
testTaprootKeyFamily = 77
|
|
|
|
testAmount = 800_000
|
|
|
|
)
|
|
|
|
|
|
|
|
var (
|
|
|
|
dummyInternalKeyBytes, _ = hex.DecodeString(
|
|
|
|
"03464805f5468e294d88cf15a3f06aef6c89d63ef1bd7b42db2e0c74c1ac" +
|
|
|
|
"eb90fe",
|
|
|
|
)
|
|
|
|
dummyInternalKey, _ = btcec.ParsePubKey(dummyInternalKeyBytes)
|
|
|
|
)
|
|
|
|
|
2022-03-18 18:37:46 +01:00
|
|
|
// testTaproot ensures that the daemon can send to and spend from taproot (p2tr)
|
|
|
|
// outputs.
|
|
|
|
func testTaproot(net *lntest.NetworkHarness, t *harnessTest) {
|
|
|
|
ctxb := context.Background()
|
2022-04-27 22:20:31 +02:00
|
|
|
ctxt, cancel := context.WithTimeout(ctxb, 2*defaultTimeout)
|
2022-03-18 18:37:46 +01:00
|
|
|
defer cancel()
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
testTaprootComputeInputScriptKeySpendBip86(ctxt, t, net.Alice, net)
|
|
|
|
testTaprootSignOutputRawScriptSpend(ctxt, t, net.Alice, net)
|
2022-04-27 22:20:38 +02:00
|
|
|
testTaprootSignOutputRawKeySpendBip86(ctxt, t, net.Alice, net)
|
2022-04-27 22:20:31 +02:00
|
|
|
testTaprootSignOutputRawKeySpendRootHash(ctxt, t, net.Alice, net)
|
2022-04-27 22:20:37 +02:00
|
|
|
testTaprootMuSig2KeySpendBip86(ctxt, t, net.Alice, net)
|
|
|
|
testTaprootMuSig2KeySpendRootHash(ctxt, t, net.Alice, net)
|
|
|
|
testTaprootMuSig2ScriptSpend(ctxt, t, net.Alice, net)
|
|
|
|
testTaprootMuSig2CombinedLeafKeySpend(ctxt, t, net.Alice, net)
|
2022-03-18 18:37:50 +01:00
|
|
|
}
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
// testTaprootComputeInputScriptKeySpendBip86 tests sending to and spending from
|
|
|
|
// p2tr key spend only (BIP-0086) addresses through the SendCoins RPC which
|
|
|
|
// internally uses the ComputeInputScript method for signing.
|
|
|
|
func testTaprootComputeInputScriptKeySpendBip86(ctxt context.Context,
|
|
|
|
t *harnessTest, alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
2022-03-18 18:37:50 +01:00
|
|
|
|
2022-03-18 18:37:46 +01:00
|
|
|
// We'll start the test by sending Alice some coins, which she'll use to
|
|
|
|
// send to herself on a p2tr output.
|
2022-04-27 22:20:31 +02:00
|
|
|
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, alice)
|
2022-03-18 18:37:46 +01:00
|
|
|
|
|
|
|
// Let's create a p2tr address now.
|
2022-04-27 22:20:31 +02:00
|
|
|
p2trResp, err := alice.NewAddress(ctxt, &lnrpc.NewAddressRequest{
|
2022-03-18 18:37:46 +01:00
|
|
|
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
|
|
|
|
})
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Assert this is a segwit v1 address that starts with bcrt1p.
|
|
|
|
require.Contains(
|
|
|
|
t.t, p2trResp.Address, net.Miner.ActiveNet.Bech32HRPSegwit+"1p",
|
|
|
|
)
|
|
|
|
|
|
|
|
// Send the coins from Alice's wallet to her own, but to the new p2tr
|
|
|
|
// address.
|
2022-04-27 22:20:31 +02:00
|
|
|
_, err = alice.SendCoins(ctxt, &lnrpc.SendCoinsRequest{
|
2022-03-18 18:37:46 +01:00
|
|
|
Addr: p2trResp.Address,
|
|
|
|
Amount: 0.5 * btcutil.SatoshiPerBitcoin,
|
|
|
|
})
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
txid, err := waitForTxInMempool(net.Miner.Client, defaultTimeout)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Wait until bob has seen the tx and considers it as owned.
|
|
|
|
p2trOutputIndex := getOutputIndex(t, net.Miner, txid, p2trResp.Address)
|
|
|
|
op := &lnrpc.OutPoint{
|
|
|
|
TxidBytes: txid[:],
|
|
|
|
OutputIndex: uint32(p2trOutputIndex),
|
|
|
|
}
|
2022-04-27 22:20:31 +02:00
|
|
|
assertWalletUnspent(t, alice, op)
|
2022-03-18 18:37:46 +01:00
|
|
|
|
|
|
|
// Mine a block to clean up the mempool.
|
|
|
|
mineBlocks(t, net, 1, 1)
|
|
|
|
|
|
|
|
// Let's sweep the whole wallet to a new p2tr address, making sure we
|
|
|
|
// can sign transactions with v0 and v1 inputs.
|
2022-04-27 22:20:31 +02:00
|
|
|
p2trResp, err = alice.NewAddress(ctxt, &lnrpc.NewAddressRequest{
|
2022-03-18 18:37:46 +01:00
|
|
|
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
|
|
|
|
})
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
_, err = alice.SendCoins(ctxt, &lnrpc.SendCoinsRequest{
|
2022-03-18 18:37:46 +01:00
|
|
|
Addr: p2trResp.Address,
|
|
|
|
SendAll: true,
|
|
|
|
})
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
// Make sure the coins sent to the address are confirmed correctly,
|
|
|
|
// including the confirmation notification.
|
|
|
|
confirmAddress(ctxt, t, net, alice, p2trResp.Address)
|
2022-03-18 18:37:46 +01:00
|
|
|
}
|
2022-03-18 18:37:50 +01:00
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
// testTaprootSignOutputRawScriptSpend tests sending to and spending from p2tr
|
|
|
|
// script addresses using the script path with the SignOutputRaw RPC.
|
|
|
|
func testTaprootSignOutputRawScriptSpend(ctxt context.Context, t *harnessTest,
|
|
|
|
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
2022-03-18 18:37:50 +01:00
|
|
|
|
|
|
|
// For the next step, we need a public key. Let's use a special family
|
|
|
|
// for this.
|
2022-04-27 22:20:31 +02:00
|
|
|
keyDesc, err := alice.WalletKitClient.DeriveNextKey(
|
|
|
|
ctxt, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
|
2022-03-18 18:37:50 +01:00
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
leafSigningKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Let's create a taproot script output now. This is a hash lock with a
|
|
|
|
// simple preimage of "foobar".
|
|
|
|
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
|
|
|
|
|
|
|
|
// Let's add a second script output as well to test the partial reveal.
|
|
|
|
leaf2 := testScriptSchnorrSig(t.t, leafSigningKey)
|
|
|
|
|
2022-04-27 22:20:35 +02:00
|
|
|
inclusionProof := leaf1.TapHash()
|
2022-03-18 18:37:50 +01:00
|
|
|
tapscript := input.TapscriptPartialReveal(
|
2022-04-27 22:20:35 +02:00
|
|
|
dummyInternalKey, leaf2, inclusionProof[:],
|
2022-03-18 18:37:50 +01:00
|
|
|
)
|
|
|
|
taprootKey, err := tapscript.TaprootKey()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
2022-04-27 22:20:31 +02:00
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
2022-03-18 18:37:50 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
2022-04-27 22:20:31 +02:00
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
2022-03-18 18:37:50 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTapscriptInput(
|
|
|
|
input.TaprootSignatureWitnessSize, tapscript,
|
|
|
|
)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
2022-03-18 18:37:52 +01:00
|
|
|
PreviousOutPoint: p2trOutpoint,
|
2022-03-18 18:37:50 +01:00
|
|
|
}}
|
2022-04-27 22:20:31 +02:00
|
|
|
value := int64(testAmount - requiredFee)
|
2022-03-18 18:37:50 +01:00
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
utxoInfo := []*signrpc.TxOut{{
|
|
|
|
PkScript: p2trPkScript,
|
2022-04-27 22:20:31 +02:00
|
|
|
Value: testAmount,
|
2022-03-18 18:37:50 +01:00
|
|
|
}}
|
2022-04-12 19:30:12 +02:00
|
|
|
|
|
|
|
// Before we actually sign, we want to make sure that we get an error
|
|
|
|
// when we try to sign for a Taproot output without specifying all UTXO
|
|
|
|
// information.
|
2022-04-27 22:20:31 +02:00
|
|
|
_, err = alice.SignerClient.SignOutputRaw(
|
2022-04-12 19:30:12 +02:00
|
|
|
ctxt, &signrpc.SignReq{
|
|
|
|
RawTxBytes: buf.Bytes(),
|
|
|
|
SignDescs: []*signrpc.SignDescriptor{{
|
|
|
|
Output: utxoInfo[0],
|
|
|
|
InputIndex: 0,
|
|
|
|
KeyDesc: keyDesc,
|
|
|
|
Sighash: uint32(txscript.SigHashDefault),
|
|
|
|
WitnessScript: leaf2.Script,
|
|
|
|
}},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.Error(t.t, err)
|
|
|
|
require.Contains(
|
|
|
|
t.t, err.Error(), "error signing taproot output, transaction "+
|
|
|
|
"input 0 is missing its previous outpoint information",
|
|
|
|
)
|
|
|
|
|
|
|
|
// Do the actual signing now.
|
2022-04-27 22:20:31 +02:00
|
|
|
signResp, err := alice.SignerClient.SignOutputRaw(
|
2022-03-18 18:37:50 +01:00
|
|
|
ctxt, &signrpc.SignReq{
|
|
|
|
RawTxBytes: buf.Bytes(),
|
|
|
|
SignDescs: []*signrpc.SignDescriptor{{
|
|
|
|
Output: utxoInfo[0],
|
|
|
|
InputIndex: 0,
|
|
|
|
KeyDesc: keyDesc,
|
|
|
|
Sighash: uint32(txscript.SigHashDefault),
|
|
|
|
WitnessScript: leaf2.Script,
|
|
|
|
}},
|
|
|
|
PrevOutputs: utxoInfo,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// We can now assemble the witness stack.
|
|
|
|
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
signResp.RawSigs[0],
|
|
|
|
leaf2.Script,
|
|
|
|
controlBlockBytes,
|
|
|
|
}
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
2022-03-18 18:37:52 +01:00
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
2022-04-27 22:20:31 +02:00
|
|
|
Script: p2trPkScript,
|
2022-03-18 18:37:51 +01:00
|
|
|
},
|
2022-04-27 22:20:31 +02:00
|
|
|
p2wkhAddr.String(),
|
2022-03-18 18:37:51 +01:00
|
|
|
)
|
|
|
|
}
|
|
|
|
|
2022-04-27 22:20:38 +02:00
|
|
|
// testTaprootSignOutputRawKeySpendBip86 tests that a tapscript address can
|
|
|
|
// also be spent using the key spend path through the SignOutputRaw RPC using a
|
|
|
|
// BIP0086 key spend only commitment.
|
|
|
|
func testTaprootSignOutputRawKeySpendBip86(ctxt context.Context,
|
|
|
|
t *harnessTest, alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
|
|
|
|
|
|
|
// For the next step, we need a public key. Let's use a special family
|
|
|
|
// for this.
|
|
|
|
keyDesc, err := alice.WalletKitClient.DeriveNextKey(
|
|
|
|
ctxt, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
internalKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// We want to make sure we can still use a tweaked key, even if it ends
|
|
|
|
// up being essentially double tweaked because of the taproot root hash.
|
|
|
|
dummyKeyTweak := sha256.Sum256([]byte("this is a key tweak"))
|
|
|
|
internalKey = input.TweakPubKeyWithTweak(internalKey, dummyKeyTweak[:])
|
|
|
|
|
|
|
|
// Our taproot key is a BIP0086 key spend only construction that just
|
|
|
|
// commits to the internal key and no root hash.
|
|
|
|
taprootKey := txscript.ComputeTaprootKeyNoScript(internalKey)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
|
|
|
PreviousOutPoint: p2trOutpoint,
|
|
|
|
}}
|
|
|
|
value := int64(testAmount - requiredFee)
|
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
utxoInfo := []*signrpc.TxOut{{
|
|
|
|
PkScript: p2trPkScript,
|
|
|
|
Value: testAmount,
|
|
|
|
}}
|
|
|
|
signResp, err := alice.SignerClient.SignOutputRaw(
|
|
|
|
ctxt, &signrpc.SignReq{
|
|
|
|
RawTxBytes: buf.Bytes(),
|
|
|
|
SignDescs: []*signrpc.SignDescriptor{{
|
|
|
|
Output: utxoInfo[0],
|
|
|
|
InputIndex: 0,
|
|
|
|
KeyDesc: keyDesc,
|
|
|
|
SingleTweak: dummyKeyTweak[:],
|
|
|
|
Sighash: uint32(txscript.SigHashDefault),
|
|
|
|
TaprootKeySpend: true,
|
|
|
|
}},
|
|
|
|
PrevOutputs: utxoInfo,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
signResp.RawSigs[0],
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
|
|
|
Script: p2trPkScript,
|
|
|
|
},
|
|
|
|
p2wkhAddr.String(),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
// testTaprootSignOutputRawKeySpendRootHash tests that a tapscript address can
|
|
|
|
// also be spent using the key spend path through the SignOutputRaw RPC using a
|
|
|
|
// tapscript root hash.
|
|
|
|
func testTaprootSignOutputRawKeySpendRootHash(ctxt context.Context,
|
|
|
|
t *harnessTest, alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
2022-03-18 18:37:51 +01:00
|
|
|
|
|
|
|
// For the next step, we need a public key. Let's use a special family
|
|
|
|
// for this.
|
2022-04-27 22:20:31 +02:00
|
|
|
keyDesc, err := alice.WalletKitClient.DeriveNextKey(
|
|
|
|
ctxt, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
|
2022-03-18 18:37:51 +01:00
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
internalKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// We want to make sure we can still use a tweaked key, even if it ends
|
|
|
|
// up being essentially double tweaked because of the taproot root hash.
|
|
|
|
dummyKeyTweak := sha256.Sum256([]byte("this is a key tweak"))
|
|
|
|
internalKey = input.TweakPubKeyWithTweak(internalKey, dummyKeyTweak[:])
|
|
|
|
|
|
|
|
// Let's create a taproot script output now. This is a hash lock with a
|
|
|
|
// simple preimage of "foobar".
|
|
|
|
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
|
|
|
|
|
|
|
|
rootHash := leaf1.TapHash()
|
|
|
|
taprootKey := txscript.ComputeTaprootOutputKey(internalKey, rootHash[:])
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
2022-04-27 22:20:31 +02:00
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
2022-03-18 18:37:51 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
2022-04-27 22:20:31 +02:00
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
2022-03-18 18:37:51 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
2022-04-27 22:20:31 +02:00
|
|
|
PreviousOutPoint: p2trOutpoint,
|
2022-03-18 18:37:51 +01:00
|
|
|
}}
|
2022-04-27 22:20:31 +02:00
|
|
|
value := int64(testAmount - requiredFee)
|
2022-03-18 18:37:51 +01:00
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
utxoInfo := []*signrpc.TxOut{{
|
|
|
|
PkScript: p2trPkScript,
|
2022-04-27 22:20:31 +02:00
|
|
|
Value: testAmount,
|
2022-03-18 18:37:51 +01:00
|
|
|
}}
|
2022-04-27 22:20:31 +02:00
|
|
|
signResp, err := alice.SignerClient.SignOutputRaw(
|
2022-03-18 18:37:51 +01:00
|
|
|
ctxt, &signrpc.SignReq{
|
|
|
|
RawTxBytes: buf.Bytes(),
|
|
|
|
SignDescs: []*signrpc.SignDescriptor{{
|
|
|
|
Output: utxoInfo[0],
|
|
|
|
InputIndex: 0,
|
|
|
|
KeyDesc: keyDesc,
|
|
|
|
SingleTweak: dummyKeyTweak[:],
|
|
|
|
Sighash: uint32(txscript.SigHashDefault),
|
|
|
|
WitnessScript: rootHash[:],
|
|
|
|
TaprootKeySpend: true,
|
|
|
|
}},
|
|
|
|
PrevOutputs: utxoInfo,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
signResp.RawSigs[0],
|
|
|
|
}
|
|
|
|
|
2022-04-27 22:20:31 +02:00
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
|
|
|
Script: p2trPkScript,
|
2022-03-18 18:37:50 +01:00
|
|
|
},
|
2022-04-27 22:20:31 +02:00
|
|
|
p2wkhAddr.String(),
|
2022-03-18 18:37:50 +01:00
|
|
|
)
|
|
|
|
}
|
|
|
|
|
2022-04-27 22:20:37 +02:00
|
|
|
// testTaprootMuSig2KeySpendBip86 tests that a combined MuSig2 key can also be
|
|
|
|
// used as a BIP-0086 key spend only key.
|
|
|
|
func testTaprootMuSig2KeySpendBip86(ctxt context.Context, t *harnessTest,
|
|
|
|
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
|
|
|
|
|
|
|
// We're not going to commit to a script. So our taproot tweak will be
|
|
|
|
// empty and just specify the necessary flag.
|
|
|
|
taprootTweak := &signrpc.TaprootTweakDesc{
|
|
|
|
KeySpendOnly: true,
|
|
|
|
}
|
|
|
|
|
|
|
|
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
|
|
|
|
ctxt, t, alice,
|
|
|
|
)
|
|
|
|
_, taprootKey, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
|
|
|
|
ctxt, t, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
|
|
|
|
allPubKeys,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
|
|
|
PreviousOutPoint: p2trOutpoint,
|
|
|
|
}}
|
|
|
|
value := int64(testAmount - requiredFee)
|
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
utxoInfo := []*signrpc.TxOut{{
|
|
|
|
PkScript: p2trPkScript,
|
|
|
|
Value: testAmount,
|
|
|
|
}}
|
|
|
|
|
|
|
|
// We now need to create the raw sighash of the transaction, as that
|
|
|
|
// will be the message we're signing collaboratively.
|
|
|
|
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
|
|
|
|
utxoInfo[0].PkScript, utxoInfo[0].Value,
|
|
|
|
)
|
|
|
|
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
|
|
|
|
|
|
|
|
sigHash, err := txscript.CalcTaprootSignatureHash(
|
|
|
|
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Now that we have the transaction prepared, we need to start with the
|
|
|
|
// signing. We simulate all three parties here, so we need to do
|
|
|
|
// everything three times. But because we're going to use session 1 to
|
|
|
|
// combine everything, we don't need its response, as it will store its
|
|
|
|
// own signature.
|
|
|
|
_, err = alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
signResp2, err := alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp2.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
Cleanup: true,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
signResp3, err := alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp3.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
Cleanup: true,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Luckily only one of the signers needs to combine the signature, so
|
|
|
|
// let's do that now.
|
|
|
|
combineReq1, err := alice.SignerClient.MuSig2CombineSig(
|
|
|
|
ctxt, &signrpc.MuSig2CombineSigRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
OtherPartialSignatures: [][]byte{
|
|
|
|
signResp2.LocalPartialSignature,
|
|
|
|
signResp3.LocalPartialSignature,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, true, combineReq1.HaveAllSignatures)
|
|
|
|
require.NotEmpty(t.t, combineReq1.FinalSignature)
|
|
|
|
|
|
|
|
sig, err := schnorr.ParseSignature(combineReq1.FinalSignature)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.True(t.t, sig.Verify(sigHash, taprootKey))
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
combineReq1.FinalSignature,
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
|
|
|
Script: p2trPkScript,
|
|
|
|
},
|
|
|
|
p2wkhAddr.String(),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// testTaprootMuSig2KeySpendRootHash tests that a tapscript address can also be
|
|
|
|
// spent using a MuSig2 combined key.
|
|
|
|
func testTaprootMuSig2KeySpendRootHash(ctxt context.Context, t *harnessTest,
|
|
|
|
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
|
|
|
|
|
|
|
// We're going to commit to a script as well. This is a hash lock with a
|
|
|
|
// simple preimage of "foobar". We need to know this upfront so, we can
|
|
|
|
// specify the taproot tweak with the root hash when creating the Musig2
|
|
|
|
// signing session.
|
|
|
|
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
|
|
|
|
rootHash := leaf1.TapHash()
|
|
|
|
taprootTweak := &signrpc.TaprootTweakDesc{
|
|
|
|
ScriptRoot: rootHash[:],
|
|
|
|
}
|
|
|
|
|
|
|
|
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
|
|
|
|
ctxt, t, alice,
|
|
|
|
)
|
|
|
|
_, taprootKey, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
|
|
|
|
ctxt, t, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
|
|
|
|
allPubKeys,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
|
|
|
PreviousOutPoint: p2trOutpoint,
|
|
|
|
}}
|
|
|
|
value := int64(testAmount - requiredFee)
|
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
utxoInfo := []*signrpc.TxOut{{
|
|
|
|
PkScript: p2trPkScript,
|
|
|
|
Value: testAmount,
|
|
|
|
}}
|
|
|
|
|
|
|
|
// We now need to create the raw sighash of the transaction, as that
|
|
|
|
// will be the message we're signing collaboratively.
|
|
|
|
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
|
|
|
|
utxoInfo[0].PkScript, utxoInfo[0].Value,
|
|
|
|
)
|
|
|
|
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
|
|
|
|
|
|
|
|
sigHash, err := txscript.CalcTaprootSignatureHash(
|
|
|
|
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Now that we have the transaction prepared, we need to start with the
|
|
|
|
// signing. We simulate all three parties here, so we need to do
|
|
|
|
// everything three times. But because we're going to use session 1 to
|
|
|
|
// combine everything, we don't need its response, as it will store its
|
|
|
|
// own signature.
|
|
|
|
_, err = alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
signResp2, err := alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp2.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
Cleanup: true,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
signResp3, err := alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp3.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
Cleanup: true,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Luckily only one of the signers needs to combine the signature, so
|
|
|
|
// let's do that now.
|
|
|
|
combineReq1, err := alice.SignerClient.MuSig2CombineSig(
|
|
|
|
ctxt, &signrpc.MuSig2CombineSigRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
OtherPartialSignatures: [][]byte{
|
|
|
|
signResp2.LocalPartialSignature,
|
|
|
|
signResp3.LocalPartialSignature,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, true, combineReq1.HaveAllSignatures)
|
|
|
|
require.NotEmpty(t.t, combineReq1.FinalSignature)
|
|
|
|
|
|
|
|
sig, err := schnorr.ParseSignature(combineReq1.FinalSignature)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.True(t.t, sig.Verify(sigHash, taprootKey))
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
combineReq1.FinalSignature,
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
|
|
|
Script: p2trPkScript,
|
|
|
|
},
|
|
|
|
p2wkhAddr.String(),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// testTaprootMuSig2ScriptSpend tests that a tapscript address with an internal
|
|
|
|
// key that is a MuSig2 combined key can also be spent using the script path.
|
|
|
|
func testTaprootMuSig2ScriptSpend(ctxt context.Context, t *harnessTest,
|
|
|
|
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
|
|
|
|
|
|
|
// We're going to commit to a script and spend the output using the
|
|
|
|
// script. This is a hash lock with a simple preimage of "foobar". We
|
|
|
|
// need to know this upfront so, we can specify the taproot tweak with
|
|
|
|
// the root hash when creating the Musig2 signing session.
|
|
|
|
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
|
|
|
|
rootHash := leaf1.TapHash()
|
|
|
|
taprootTweak := &signrpc.TaprootTweakDesc{
|
|
|
|
ScriptRoot: rootHash[:],
|
|
|
|
}
|
|
|
|
|
|
|
|
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
|
|
|
|
ctxt, t, alice,
|
|
|
|
)
|
|
|
|
internalKey, taprootKey, _, _, _ := createMuSigSessions(
|
|
|
|
ctxt, t, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
|
|
|
|
allPubKeys,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Because we know the internal key and the script we want to spend, we
|
|
|
|
// can now create the tapscript struct that's used for assembling the
|
|
|
|
// control block and fee estimation.
|
|
|
|
tapscript := input.TapscriptFullTree(internalKey, leaf1)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTapscriptInput(
|
|
|
|
len([]byte("foobar"))+len(leaf1.Script)+1, tapscript,
|
|
|
|
)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
|
|
|
PreviousOutPoint: p2trOutpoint,
|
|
|
|
}}
|
|
|
|
value := int64(testAmount - requiredFee)
|
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
// We can now assemble the witness stack.
|
|
|
|
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
[]byte("foobar"),
|
|
|
|
leaf1.Script,
|
|
|
|
controlBlockBytes,
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
|
|
|
Script: p2trPkScript,
|
|
|
|
},
|
|
|
|
p2wkhAddr.String(),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// testTaprootMuSig2CombinedLeafKeySpend tests that a MuSig2 combined key can be
|
|
|
|
// used for an OP_CHECKSIG inside a tap script leaf spend.
|
|
|
|
func testTaprootMuSig2CombinedLeafKeySpend(ctxt context.Context, t *harnessTest,
|
|
|
|
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
|
|
|
|
|
|
|
|
// We're using the combined MuSig2 key in a script leaf. So we need to
|
|
|
|
// derive the combined key first, before we can build the script.
|
|
|
|
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
|
|
|
|
ctxt, t, alice,
|
|
|
|
)
|
|
|
|
combineResp, err := alice.SignerClient.MuSig2CombineKeys(
|
|
|
|
ctxt, &signrpc.MuSig2CombineKeysRequest{
|
|
|
|
AllSignerPubkeys: allPubKeys,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
combinedPubKey, err := schnorr.ParsePubKey(combineResp.CombinedKey)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// We're going to commit to a script and spend the output using the
|
|
|
|
// script. This is just an OP_CHECKSIG with the combined MuSig2 public
|
|
|
|
// key.
|
|
|
|
leaf := testScriptSchnorrSig(t.t, combinedPubKey)
|
|
|
|
tapscript := input.TapscriptPartialReveal(dummyInternalKey, leaf, nil)
|
|
|
|
taprootKey, err := tapscript.TaprootKey()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
|
|
|
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
|
|
|
|
ctxt, t, net, alice, taprootKey, testAmount,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Spend the output again, this time back to a p2wkh address.
|
|
|
|
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
|
|
|
|
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Create fee estimation for a p2tr input and p2wkh output.
|
|
|
|
feeRate := chainfee.SatPerKWeight(12500)
|
|
|
|
estimator := input.TxWeightEstimator{}
|
|
|
|
estimator.AddTapscriptInput(
|
|
|
|
input.TaprootSignatureWitnessSize, tapscript,
|
|
|
|
)
|
|
|
|
estimator.AddP2WKHOutput()
|
|
|
|
estimatedWeight := int64(estimator.Weight())
|
|
|
|
requiredFee := feeRate.FeeForWeight(estimatedWeight)
|
|
|
|
|
|
|
|
tx := wire.NewMsgTx(2)
|
|
|
|
tx.TxIn = []*wire.TxIn{{
|
|
|
|
PreviousOutPoint: p2trOutpoint,
|
|
|
|
}}
|
|
|
|
value := int64(testAmount - requiredFee)
|
|
|
|
tx.TxOut = []*wire.TxOut{{
|
|
|
|
PkScript: p2wkhPkScript,
|
|
|
|
Value: value,
|
|
|
|
}}
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
utxoInfo := []*signrpc.TxOut{{
|
|
|
|
PkScript: p2trPkScript,
|
|
|
|
Value: testAmount,
|
|
|
|
}}
|
|
|
|
|
|
|
|
// Do the actual signing now.
|
|
|
|
_, _, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
|
|
|
|
ctxt, t, alice, nil, keyDesc1, keyDesc2, keyDesc3, allPubKeys,
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// We now need to create the raw sighash of the transaction, as that
|
|
|
|
// will be the message we're signing collaboratively.
|
|
|
|
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
|
|
|
|
utxoInfo[0].PkScript, utxoInfo[0].Value,
|
|
|
|
)
|
|
|
|
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
|
|
|
|
|
|
|
|
sigHash, err := txscript.CalcTapscriptSignaturehash(
|
|
|
|
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
|
|
|
|
leaf,
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Now that we have the transaction prepared, we need to start with the
|
|
|
|
// signing. We simulate all three parties here, so we need to do
|
|
|
|
// everything three times. But because we're going to use session 1 to
|
|
|
|
// combine everything, we don't need its response, as it will store its
|
|
|
|
// own signature.
|
|
|
|
_, err = alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
signResp2, err := alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp2.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
Cleanup: true,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
signResp3, err := alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp3.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
2022-05-04 18:31:47 +02:00
|
|
|
// We manually clean up session 3, just to make sure that works as well.
|
|
|
|
_, err = alice.SignerClient.MuSig2Cleanup(
|
|
|
|
ctxt, &signrpc.MuSig2CleanupRequest{
|
|
|
|
SessionId: sessResp3.SessionId,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// A second call to that cleaned up session should now fail with a
|
|
|
|
// specific error.
|
|
|
|
_, err = alice.SignerClient.MuSig2Sign(
|
|
|
|
ctxt, &signrpc.MuSig2SignRequest{
|
|
|
|
SessionId: sessResp3.SessionId,
|
|
|
|
MessageDigest: sigHash,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.Error(t.t, err)
|
|
|
|
require.Contains(t.t, err.Error(), "not found")
|
|
|
|
|
2022-04-27 22:20:37 +02:00
|
|
|
// Luckily only one of the signers needs to combine the signature, so
|
|
|
|
// let's do that now.
|
|
|
|
combineReq1, err := alice.SignerClient.MuSig2CombineSig(
|
|
|
|
ctxt, &signrpc.MuSig2CombineSigRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
OtherPartialSignatures: [][]byte{
|
|
|
|
signResp2.LocalPartialSignature,
|
|
|
|
signResp3.LocalPartialSignature,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, true, combineReq1.HaveAllSignatures)
|
|
|
|
require.NotEmpty(t.t, combineReq1.FinalSignature)
|
|
|
|
|
|
|
|
sig, err := schnorr.ParseSignature(combineReq1.FinalSignature)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.True(t.t, sig.Verify(sigHash, combinedPubKey))
|
|
|
|
|
|
|
|
// We can now assemble the witness stack.
|
|
|
|
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
tx.TxIn[0].Witness = wire.TxWitness{
|
|
|
|
combineReq1.FinalSignature,
|
|
|
|
leaf.Script,
|
|
|
|
controlBlockBytes,
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serialize, weigh and publish the TX now, then make sure the
|
|
|
|
// coins are sent and confirmed to the final sweep destination address.
|
|
|
|
publishTxAndConfirmSweep(
|
|
|
|
ctxt, t, net, alice, tx, estimatedWeight,
|
|
|
|
&chainrpc.SpendRequest{
|
|
|
|
Outpoint: &chainrpc.Outpoint{
|
|
|
|
Hash: p2trOutpoint.Hash[:],
|
|
|
|
Index: p2trOutpoint.Index,
|
|
|
|
},
|
|
|
|
Script: p2trPkScript,
|
|
|
|
},
|
|
|
|
p2wkhAddr.String(),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
2022-03-18 18:37:50 +01:00
|
|
|
// testScriptHashLock returns a simple bitcoin script that locks the funds to
|
|
|
|
// a hash lock of the given preimage.
|
|
|
|
func testScriptHashLock(t *testing.T, preimage []byte) txscript.TapLeaf {
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
builder.AddOp(txscript.OP_DUP)
|
|
|
|
builder.AddOp(txscript.OP_HASH160)
|
|
|
|
builder.AddData(btcutil.Hash160(preimage))
|
|
|
|
builder.AddOp(txscript.OP_EQUALVERIFY)
|
|
|
|
script1, err := builder.Script()
|
|
|
|
require.NoError(t, err)
|
|
|
|
return txscript.NewBaseTapLeaf(script1)
|
|
|
|
}
|
|
|
|
|
|
|
|
// testScriptSchnorrSig returns a simple bitcoin script that locks the funds to
|
|
|
|
// a Schnorr signature of the given public key.
|
|
|
|
func testScriptSchnorrSig(t *testing.T,
|
|
|
|
pubKey *btcec.PublicKey) txscript.TapLeaf {
|
|
|
|
|
|
|
|
builder := txscript.NewScriptBuilder()
|
|
|
|
builder.AddData(schnorr.SerializePubKey(pubKey))
|
|
|
|
builder.AddOp(txscript.OP_CHECKSIG)
|
|
|
|
script2, err := builder.Script()
|
|
|
|
require.NoError(t, err)
|
|
|
|
return txscript.NewBaseTapLeaf(script2)
|
|
|
|
}
|
|
|
|
|
|
|
|
// newAddrWithScript returns a new address and its pkScript.
|
|
|
|
func newAddrWithScript(ctx context.Context, t *testing.T,
|
|
|
|
node *lntest.HarnessNode, addrType lnrpc.AddressType) (btcutil.Address,
|
|
|
|
[]byte) {
|
|
|
|
|
|
|
|
p2wkhResp, err := node.NewAddress(ctx, &lnrpc.NewAddressRequest{
|
|
|
|
Type: addrType,
|
|
|
|
})
|
|
|
|
require.NoError(t, err)
|
|
|
|
|
|
|
|
p2wkhAddr, err := btcutil.DecodeAddress(
|
|
|
|
p2wkhResp.Address, harnessNetParams,
|
|
|
|
)
|
|
|
|
require.NoError(t, err)
|
|
|
|
|
|
|
|
p2wkhPkScript, err := txscript.PayToAddrScript(p2wkhAddr)
|
|
|
|
require.NoError(t, err)
|
|
|
|
|
|
|
|
return p2wkhAddr, p2wkhPkScript
|
|
|
|
}
|
2022-04-27 22:20:31 +02:00
|
|
|
|
|
|
|
// sendToTaprootOutput sends coins to a p2tr output of the given taproot key and
|
|
|
|
// mines a block to confirm the coins.
|
|
|
|
func sendToTaprootOutput(ctx context.Context, t *harnessTest,
|
|
|
|
net *lntest.NetworkHarness, node *lntest.HarnessNode,
|
|
|
|
taprootKey *btcec.PublicKey, amt int64) (wire.OutPoint, []byte) {
|
|
|
|
|
|
|
|
tapScriptAddr, err := btcutil.NewAddressTaproot(
|
|
|
|
schnorr.SerializePubKey(taprootKey), harnessNetParams,
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Send some coins to the generated tapscript address.
|
|
|
|
_, err = node.SendCoins(ctx, &lnrpc.SendCoinsRequest{
|
|
|
|
Addr: tapScriptAddr.String(),
|
|
|
|
Amount: amt,
|
|
|
|
})
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Wait until the TX is found in the mempool.
|
|
|
|
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
p2trOutputIndex := getOutputIndex(
|
|
|
|
t, net.Miner, txid, tapScriptAddr.String(),
|
|
|
|
)
|
|
|
|
p2trOutpoint := wire.OutPoint{
|
|
|
|
Hash: *txid,
|
|
|
|
Index: uint32(p2trOutputIndex),
|
|
|
|
}
|
|
|
|
|
|
|
|
// Clear the mempool.
|
|
|
|
mineBlocks(t, net, 1, 1)
|
|
|
|
|
|
|
|
return p2trOutpoint, p2trPkScript
|
|
|
|
}
|
|
|
|
|
|
|
|
// publishTxAndConfirmSweep is a helper function that publishes a transaction
|
|
|
|
// after checking its weight against an estimate. After asserting the given
|
|
|
|
// spend request, the given sweep address' balance is verified to be seen as
|
|
|
|
// funds belonging to the wallet.
|
|
|
|
func publishTxAndConfirmSweep(ctx context.Context, t *harnessTest,
|
|
|
|
net *lntest.NetworkHarness, node *lntest.HarnessNode, tx *wire.MsgTx,
|
|
|
|
estimatedWeight int64, spendRequest *chainrpc.SpendRequest,
|
|
|
|
sweepAddr string) {
|
|
|
|
|
|
|
|
// Before we publish the tx that spends the p2tr transaction, we want to
|
|
|
|
// register a spend listener that we expect to fire after mining the
|
|
|
|
// block.
|
|
|
|
_, currentHeight, err := net.Miner.Client.GetBestBlock()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// For a Taproot output we cannot leave the outpoint empty. Let's make
|
|
|
|
// sure the API returns the correct error here.
|
|
|
|
spendClient, err := node.ChainClient.RegisterSpendNtfn(
|
|
|
|
ctx, &chainrpc.SpendRequest{
|
|
|
|
Script: spendRequest.Script,
|
|
|
|
HeightHint: uint32(currentHeight),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// The error is only thrown when trying to read a message.
|
|
|
|
_, err = spendClient.Recv()
|
|
|
|
require.Contains(
|
|
|
|
t.t, err.Error(),
|
|
|
|
"cannot register witness v1 spend request without outpoint",
|
|
|
|
)
|
|
|
|
|
|
|
|
// Now try again, this time with the outpoint set.
|
|
|
|
spendClient, err = node.ChainClient.RegisterSpendNtfn(
|
|
|
|
ctx, &chainrpc.SpendRequest{
|
|
|
|
Outpoint: spendRequest.Outpoint,
|
|
|
|
Script: spendRequest.Script,
|
|
|
|
HeightHint: uint32(currentHeight),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
var buf bytes.Buffer
|
|
|
|
require.NoError(t.t, tx.Serialize(&buf))
|
|
|
|
|
|
|
|
// Since Schnorr signatures are fixed size, we must be able to estimate
|
|
|
|
// the size of this transaction exactly.
|
|
|
|
txWeight := blockchain.GetTransactionWeight(btcutil.NewTx(tx))
|
|
|
|
require.Equal(t.t, estimatedWeight, txWeight)
|
|
|
|
|
|
|
|
_, err = node.WalletKitClient.PublishTransaction(
|
|
|
|
ctx, &walletrpc.Transaction{
|
|
|
|
TxHex: buf.Bytes(),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Make sure the coins sent to the address are confirmed correctly,
|
|
|
|
// including the confirmation notification.
|
|
|
|
confirmAddress(ctx, t, net, node, sweepAddr)
|
|
|
|
|
|
|
|
// We now expect our spend event to go through.
|
|
|
|
spendMsg, err := spendClient.Recv()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
spend := spendMsg.GetSpend()
|
|
|
|
require.NotNil(t.t, spend)
|
|
|
|
require.Equal(t.t, spend.SpendingHeight, uint32(currentHeight+1))
|
|
|
|
}
|
|
|
|
|
|
|
|
// confirmAddress makes sure that a transaction in the mempool spends funds to
|
|
|
|
// the given address. It also checks that a confirmation notification for the
|
|
|
|
// address is triggered when the transaction is mined.
|
|
|
|
func confirmAddress(ctx context.Context, t *harnessTest,
|
|
|
|
net *lntest.NetworkHarness, node *lntest.HarnessNode,
|
|
|
|
addrString string) {
|
|
|
|
|
|
|
|
// Wait until the tx that sends to the address is found.
|
|
|
|
txid, err := waitForTxInMempool(net.Miner.Client, minerMempoolTimeout)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Wait until bob has seen the tx and considers it as owned.
|
|
|
|
addrOutputIndex := getOutputIndex(t, net.Miner, txid, addrString)
|
|
|
|
op := &lnrpc.OutPoint{
|
|
|
|
TxidBytes: txid[:],
|
|
|
|
OutputIndex: uint32(addrOutputIndex),
|
|
|
|
}
|
|
|
|
assertWalletUnspent(t, node, op)
|
|
|
|
|
|
|
|
// Before we confirm the transaction, let's register a confirmation
|
|
|
|
// listener for it, which we expect to fire after mining a block.
|
|
|
|
parsedAddr, err := btcutil.DecodeAddress(addrString, harnessNetParams)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
addrPkScript, err := txscript.PayToAddrScript(parsedAddr)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
_, currentHeight, err := net.Miner.Client.GetBestBlock()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
confClient, err := node.ChainClient.RegisterConfirmationsNtfn(
|
|
|
|
ctx, &chainrpc.ConfRequest{
|
|
|
|
Script: addrPkScript,
|
|
|
|
Txid: txid[:],
|
|
|
|
HeightHint: uint32(currentHeight),
|
|
|
|
NumConfs: 1,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Mine another block to clean up the mempool.
|
|
|
|
mineBlocks(t, net, 1, 1)
|
|
|
|
|
|
|
|
// We now expect our confirmation to go through.
|
|
|
|
confMsg, err := confClient.Recv()
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
conf := confMsg.GetConf()
|
|
|
|
require.NotNil(t.t, conf)
|
|
|
|
require.Equal(t.t, conf.BlockHeight, uint32(currentHeight+1))
|
|
|
|
}
|
2022-04-27 22:20:37 +02:00
|
|
|
|
|
|
|
// deriveSigningKeys derives three signing keys and returns their descriptors,
|
|
|
|
// as well as the public keys in the Schnorr serialized format.
|
|
|
|
func deriveSigningKeys(ctx context.Context, t *harnessTest,
|
|
|
|
node *lntest.HarnessNode) (*signrpc.KeyDescriptor,
|
|
|
|
*signrpc.KeyDescriptor, *signrpc.KeyDescriptor, [][]byte) {
|
|
|
|
|
|
|
|
// For muSig2 we need multiple keys. We derive three of them from the
|
|
|
|
// same wallet, just so we know we can also sign for them again.
|
|
|
|
keyDesc1, err := node.WalletKitClient.DeriveNextKey(
|
|
|
|
ctx, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
pubKey1, err := btcec.ParsePubKey(keyDesc1.RawKeyBytes)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
keyDesc2, err := node.WalletKitClient.DeriveNextKey(
|
|
|
|
ctx, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
pubKey2, err := btcec.ParsePubKey(keyDesc2.RawKeyBytes)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
keyDesc3, err := node.WalletKitClient.DeriveNextKey(
|
|
|
|
ctx, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
pubKey3, err := btcec.ParsePubKey(keyDesc3.RawKeyBytes)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Now that we have all three keys we can create three sessions, one
|
|
|
|
// for each of the signers. This would of course normally not happen on
|
|
|
|
// the same node.
|
|
|
|
allPubKeys := [][]byte{
|
|
|
|
schnorr.SerializePubKey(pubKey1),
|
|
|
|
schnorr.SerializePubKey(pubKey2),
|
|
|
|
schnorr.SerializePubKey(pubKey3),
|
|
|
|
}
|
|
|
|
|
|
|
|
return keyDesc1, keyDesc2, keyDesc3, allPubKeys
|
|
|
|
}
|
|
|
|
|
|
|
|
// createMuSigSessions creates a MuSig2 session with three keys that are
|
|
|
|
// combined into a single key. The same node is used for the three signing
|
|
|
|
// participants but a separate key is generated for each session. So the result
|
|
|
|
// should be the same as if it were three different nodes.
|
|
|
|
func createMuSigSessions(ctx context.Context, t *harnessTest,
|
|
|
|
node *lntest.HarnessNode, taprootTweak *signrpc.TaprootTweakDesc,
|
|
|
|
keyDesc1, keyDesc2, keyDesc3 *signrpc.KeyDescriptor,
|
|
|
|
allPubKeys [][]byte) (*btcec.PublicKey, *btcec.PublicKey,
|
|
|
|
*signrpc.MuSig2SessionResponse, *signrpc.MuSig2SessionResponse,
|
|
|
|
*signrpc.MuSig2SessionResponse) {
|
|
|
|
|
|
|
|
sessResp1, err := node.SignerClient.MuSig2CreateSession(
|
|
|
|
ctx, &signrpc.MuSig2SessionRequest{
|
|
|
|
KeyLoc: keyDesc1.KeyLoc,
|
|
|
|
AllSignerPubkeys: allPubKeys,
|
|
|
|
TaprootTweak: taprootTweak,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// Now that we have the three keys in a combined form, we want to make
|
|
|
|
// sure the tweaking for the taproot key worked correctly. We first need
|
|
|
|
// to parse the combined key without any tweaks applied to it. That will
|
|
|
|
// be our internal key. Once we know that, we can tweak it with the
|
|
|
|
// tapHash of the script root hash. We should arrive at the same result
|
|
|
|
// as the API.
|
|
|
|
combinedKey, err := schnorr.ParsePubKey(sessResp1.CombinedKey)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// When combining the key without creating a session, we expect the same
|
|
|
|
// combined key to be created.
|
|
|
|
expectedCombinedKey := combinedKey
|
|
|
|
|
|
|
|
// Without a tweak, the internal key is equal to the combined key.
|
|
|
|
internalKey := combinedKey
|
|
|
|
|
|
|
|
// If there is a tweak, then there is the internal, pre-tweaked combined
|
|
|
|
// key and the taproot key which is fully tweaked.
|
|
|
|
if taprootTweak != nil {
|
|
|
|
internalKey, err = schnorr.ParsePubKey(
|
|
|
|
sessResp1.TaprootInternalKey,
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
|
|
|
|
// We now know the taproot key. The session with the tweak
|
|
|
|
// applied should produce the same key!
|
|
|
|
expectedCombinedKey = txscript.ComputeTaprootOutputKey(
|
|
|
|
internalKey, taprootTweak.ScriptRoot,
|
|
|
|
)
|
|
|
|
require.Equal(
|
|
|
|
t.t, schnorr.SerializePubKey(expectedCombinedKey),
|
|
|
|
schnorr.SerializePubKey(combinedKey),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
// We should also get the same keys when just calling the
|
|
|
|
// MuSig2CombineKeys RPC.
|
|
|
|
combineResp, err := node.SignerClient.MuSig2CombineKeys(
|
|
|
|
ctx, &signrpc.MuSig2CombineKeysRequest{
|
|
|
|
AllSignerPubkeys: allPubKeys,
|
|
|
|
TaprootTweak: taprootTweak,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(
|
|
|
|
t.t, schnorr.SerializePubKey(expectedCombinedKey),
|
|
|
|
combineResp.CombinedKey,
|
|
|
|
)
|
|
|
|
require.Equal(
|
|
|
|
t.t, schnorr.SerializePubKey(internalKey),
|
|
|
|
combineResp.TaprootInternalKey,
|
|
|
|
)
|
|
|
|
|
|
|
|
// Everything is good so far, let's continue with creating the signing
|
|
|
|
// session for the other two participants.
|
|
|
|
sessResp2, err := node.SignerClient.MuSig2CreateSession(
|
|
|
|
ctx, &signrpc.MuSig2SessionRequest{
|
|
|
|
KeyLoc: keyDesc2.KeyLoc,
|
|
|
|
AllSignerPubkeys: allPubKeys,
|
|
|
|
OtherSignerPublicNonces: [][]byte{
|
|
|
|
sessResp1.LocalPublicNonces,
|
|
|
|
},
|
|
|
|
TaprootTweak: taprootTweak,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, sessResp1.CombinedKey, sessResp2.CombinedKey)
|
|
|
|
|
|
|
|
sessResp3, err := node.SignerClient.MuSig2CreateSession(
|
|
|
|
ctx, &signrpc.MuSig2SessionRequest{
|
|
|
|
KeyLoc: keyDesc3.KeyLoc,
|
|
|
|
AllSignerPubkeys: allPubKeys,
|
|
|
|
OtherSignerPublicNonces: [][]byte{
|
|
|
|
sessResp1.LocalPublicNonces,
|
|
|
|
sessResp2.LocalPublicNonces,
|
|
|
|
},
|
|
|
|
TaprootTweak: taprootTweak,
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, sessResp2.CombinedKey, sessResp3.CombinedKey)
|
|
|
|
require.Equal(t.t, true, sessResp3.HaveAllNonces)
|
|
|
|
|
|
|
|
// We need to distribute the rest of the nonces.
|
|
|
|
nonceResp1, err := node.SignerClient.MuSig2RegisterNonces(
|
|
|
|
ctx, &signrpc.MuSig2RegisterNoncesRequest{
|
|
|
|
SessionId: sessResp1.SessionId,
|
|
|
|
OtherSignerPublicNonces: [][]byte{
|
|
|
|
sessResp2.LocalPublicNonces,
|
|
|
|
sessResp3.LocalPublicNonces,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, true, nonceResp1.HaveAllNonces)
|
|
|
|
|
|
|
|
nonceResp2, err := node.SignerClient.MuSig2RegisterNonces(
|
|
|
|
ctx, &signrpc.MuSig2RegisterNoncesRequest{
|
|
|
|
SessionId: sessResp2.SessionId,
|
|
|
|
OtherSignerPublicNonces: [][]byte{
|
|
|
|
sessResp3.LocalPublicNonces,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
)
|
|
|
|
require.NoError(t.t, err)
|
|
|
|
require.Equal(t.t, true, nonceResp2.HaveAllNonces)
|
|
|
|
|
|
|
|
return internalKey, combinedKey, sessResp1, sessResp2, sessResp3
|
|
|
|
}
|