itest: add MuSig2 end-to-end tests

This commit is contained in:
Oliver Gugger 2022-04-27 22:20:37 +02:00
parent e31aab5af6
commit 3ba6421d5c
No known key found for this signature in database
GPG Key ID: 8E4256593F177720
2 changed files with 716 additions and 0 deletions

View File

@ -114,6 +114,29 @@ func testRemoteSigner(net *lntest.NetworkHarness, t *harnessTest) {
fn: func(tt *harnessTest, wo, carol *lntest.HarnessNode) {
runSignOutputRaw(tt, net, wo)
},
}, {
name: "taproot",
sendCoins: true,
fn: func(tt *harnessTest, wo, carol *lntest.HarnessNode) {
ctxt, cancel := context.WithTimeout(
ctxb, 3*defaultTimeout,
)
defer cancel()
// TODO(guggero): Fix remote taproot signing by adding
// the required fields to PSBT.
// testTaprootComputeInputScriptKeySpendBip86(
// ctxt, tt, wo, net,
// )
// testTaprootSignOutputRawScriptSpend(ctxt, tt, wo, net)
// testTaprootSignOutputRawKeySpendRootHash(
// ctxt, tt, wo, net,
// )
testTaprootMuSig2KeySpendRootHash(ctxt, tt, wo, net)
testTaprootMuSig2ScriptSpend(ctxt, tt, wo, net)
testTaprootMuSig2KeySpendBip86(ctxt, tt, wo, net)
testTaprootMuSig2CombinedLeafKeySpend(ctxt, tt, wo, net)
},
}}
for _, st := range subTests {

View File

@ -46,6 +46,10 @@ func testTaproot(net *lntest.NetworkHarness, t *harnessTest) {
testTaprootComputeInputScriptKeySpendBip86(ctxt, t, net.Alice, net)
testTaprootSignOutputRawScriptSpend(ctxt, t, net.Alice, net)
testTaprootSignOutputRawKeySpendRootHash(ctxt, t, net.Alice, net)
testTaprootMuSig2KeySpendBip86(ctxt, t, net.Alice, net)
testTaprootMuSig2KeySpendRootHash(ctxt, t, net.Alice, net)
testTaprootMuSig2ScriptSpend(ctxt, t, net.Alice, net)
testTaprootMuSig2CombinedLeafKeySpend(ctxt, t, net.Alice, net)
}
// testTaprootComputeInputScriptKeySpendBip86 tests sending to and spending from
@ -337,6 +341,524 @@ func testTaprootSignOutputRawKeySpendRootHash(ctxt context.Context,
)
}
// testTaprootMuSig2KeySpendBip86 tests that a combined MuSig2 key can also be
// used as a BIP-0086 key spend only key.
func testTaprootMuSig2KeySpendBip86(ctxt context.Context, t *harnessTest,
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
// We're not going to commit to a script. So our taproot tweak will be
// empty and just specify the necessary flag.
taprootTweak := &signrpc.TaprootTweakDesc{
KeySpendOnly: true,
}
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ctxt, t, alice,
)
_, taprootKey, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
ctxt, t, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
allPubKeys,
)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
ctxt, t, net, alice, taprootKey, testAmount,
)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
estimator.AddP2WKHOutput()
estimatedWeight := int64(estimator.Weight())
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(t.t, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// We now need to create the raw sighash of the transaction, as that
// will be the message we're signing collaboratively.
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
utxoInfo[0].PkScript, utxoInfo[0].Value,
)
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
sigHash, err := txscript.CalcTaprootSignatureHash(
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
)
require.NoError(t.t, err)
// Now that we have the transaction prepared, we need to start with the
// signing. We simulate all three parties here, so we need to do
// everything three times. But because we're going to use session 1 to
// combine everything, we don't need its response, as it will store its
// own signature.
_, err = alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp1.SessionId,
MessageDigest: sigHash,
},
)
require.NoError(t.t, err)
signResp2, err := alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp2.SessionId,
MessageDigest: sigHash,
Cleanup: true,
},
)
require.NoError(t.t, err)
signResp3, err := alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
Cleanup: true,
},
)
require.NoError(t.t, err)
// Luckily only one of the signers needs to combine the signature, so
// let's do that now.
combineReq1, err := alice.SignerClient.MuSig2CombineSig(
ctxt, &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp2.LocalPartialSignature,
signResp3.LocalPartialSignature,
},
},
)
require.NoError(t.t, err)
require.Equal(t.t, true, combineReq1.HaveAllSignatures)
require.NotEmpty(t.t, combineReq1.FinalSignature)
sig, err := schnorr.ParseSignature(combineReq1.FinalSignature)
require.NoError(t.t, err)
require.True(t.t, sig.Verify(sigHash, taprootKey))
tx.TxIn[0].Witness = wire.TxWitness{
combineReq1.FinalSignature,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ctxt, t, net, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2KeySpendRootHash tests that a tapscript address can also be
// spent using a MuSig2 combined key.
func testTaprootMuSig2KeySpendRootHash(ctxt context.Context, t *harnessTest,
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
// We're going to commit to a script as well. This is a hash lock with a
// simple preimage of "foobar". We need to know this upfront so, we can
// specify the taproot tweak with the root hash when creating the Musig2
// signing session.
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootTweak := &signrpc.TaprootTweakDesc{
ScriptRoot: rootHash[:],
}
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ctxt, t, alice,
)
_, taprootKey, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
ctxt, t, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
allPubKeys,
)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
ctxt, t, net, alice, taprootKey, testAmount,
)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
estimator.AddP2WKHOutput()
estimatedWeight := int64(estimator.Weight())
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(t.t, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// We now need to create the raw sighash of the transaction, as that
// will be the message we're signing collaboratively.
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
utxoInfo[0].PkScript, utxoInfo[0].Value,
)
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
sigHash, err := txscript.CalcTaprootSignatureHash(
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
)
require.NoError(t.t, err)
// Now that we have the transaction prepared, we need to start with the
// signing. We simulate all three parties here, so we need to do
// everything three times. But because we're going to use session 1 to
// combine everything, we don't need its response, as it will store its
// own signature.
_, err = alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp1.SessionId,
MessageDigest: sigHash,
},
)
require.NoError(t.t, err)
signResp2, err := alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp2.SessionId,
MessageDigest: sigHash,
Cleanup: true,
},
)
require.NoError(t.t, err)
signResp3, err := alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
Cleanup: true,
},
)
require.NoError(t.t, err)
// Luckily only one of the signers needs to combine the signature, so
// let's do that now.
combineReq1, err := alice.SignerClient.MuSig2CombineSig(
ctxt, &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp2.LocalPartialSignature,
signResp3.LocalPartialSignature,
},
},
)
require.NoError(t.t, err)
require.Equal(t.t, true, combineReq1.HaveAllSignatures)
require.NotEmpty(t.t, combineReq1.FinalSignature)
sig, err := schnorr.ParseSignature(combineReq1.FinalSignature)
require.NoError(t.t, err)
require.True(t.t, sig.Verify(sigHash, taprootKey))
tx.TxIn[0].Witness = wire.TxWitness{
combineReq1.FinalSignature,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ctxt, t, net, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2ScriptSpend tests that a tapscript address with an internal
// key that is a MuSig2 combined key can also be spent using the script path.
func testTaprootMuSig2ScriptSpend(ctxt context.Context, t *harnessTest,
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
// We're going to commit to a script and spend the output using the
// script. This is a hash lock with a simple preimage of "foobar". We
// need to know this upfront so, we can specify the taproot tweak with
// the root hash when creating the Musig2 signing session.
leaf1 := testScriptHashLock(t.t, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootTweak := &signrpc.TaprootTweakDesc{
ScriptRoot: rootHash[:],
}
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ctxt, t, alice,
)
internalKey, taprootKey, _, _, _ := createMuSigSessions(
ctxt, t, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
allPubKeys,
)
// Because we know the internal key and the script we want to spend, we
// can now create the tapscript struct that's used for assembling the
// control block and fee estimation.
tapscript := input.TapscriptFullTree(internalKey, leaf1)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
ctxt, t, net, alice, taprootKey, testAmount,
)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTapscriptInput(
len([]byte("foobar"))+len(leaf1.Script)+1, tapscript,
)
estimator.AddP2WKHOutput()
estimatedWeight := int64(estimator.Weight())
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
// We can now assemble the witness stack.
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(t.t, err)
tx.TxIn[0].Witness = wire.TxWitness{
[]byte("foobar"),
leaf1.Script,
controlBlockBytes,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ctxt, t, net, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2CombinedLeafKeySpend tests that a MuSig2 combined key can be
// used for an OP_CHECKSIG inside a tap script leaf spend.
func testTaprootMuSig2CombinedLeafKeySpend(ctxt context.Context, t *harnessTest,
alice *lntest.HarnessNode, net *lntest.NetworkHarness) {
// We're using the combined MuSig2 key in a script leaf. So we need to
// derive the combined key first, before we can build the script.
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ctxt, t, alice,
)
combineResp, err := alice.SignerClient.MuSig2CombineKeys(
ctxt, &signrpc.MuSig2CombineKeysRequest{
AllSignerPubkeys: allPubKeys,
},
)
require.NoError(t.t, err)
combinedPubKey, err := schnorr.ParsePubKey(combineResp.CombinedKey)
require.NoError(t.t, err)
// We're going to commit to a script and spend the output using the
// script. This is just an OP_CHECKSIG with the combined MuSig2 public
// key.
leaf := testScriptSchnorrSig(t.t, combinedPubKey)
tapscript := input.TapscriptPartialReveal(dummyInternalKey, leaf, nil)
taprootKey, err := tapscript.TaprootKey()
require.NoError(t.t, err)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(
ctxt, t, net, alice, taprootKey, testAmount,
)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ctxt, t.t, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTapscriptInput(
input.TaprootSignatureWitnessSize, tapscript,
)
estimator.AddP2WKHOutput()
estimatedWeight := int64(estimator.Weight())
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(t.t, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// Do the actual signing now.
_, _, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
ctxt, t, alice, nil, keyDesc1, keyDesc2, keyDesc3, allPubKeys,
)
require.NoError(t.t, err)
// We now need to create the raw sighash of the transaction, as that
// will be the message we're signing collaboratively.
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
utxoInfo[0].PkScript, utxoInfo[0].Value,
)
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
sigHash, err := txscript.CalcTapscriptSignaturehash(
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
leaf,
)
require.NoError(t.t, err)
// Now that we have the transaction prepared, we need to start with the
// signing. We simulate all three parties here, so we need to do
// everything three times. But because we're going to use session 1 to
// combine everything, we don't need its response, as it will store its
// own signature.
_, err = alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp1.SessionId,
MessageDigest: sigHash,
},
)
require.NoError(t.t, err)
signResp2, err := alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp2.SessionId,
MessageDigest: sigHash,
Cleanup: true,
},
)
require.NoError(t.t, err)
signResp3, err := alice.SignerClient.MuSig2Sign(
ctxt, &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
Cleanup: true,
},
)
require.NoError(t.t, err)
// Luckily only one of the signers needs to combine the signature, so
// let's do that now.
combineReq1, err := alice.SignerClient.MuSig2CombineSig(
ctxt, &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp2.LocalPartialSignature,
signResp3.LocalPartialSignature,
},
},
)
require.NoError(t.t, err)
require.Equal(t.t, true, combineReq1.HaveAllSignatures)
require.NotEmpty(t.t, combineReq1.FinalSignature)
sig, err := schnorr.ParseSignature(combineReq1.FinalSignature)
require.NoError(t.t, err)
require.True(t.t, sig.Verify(sigHash, combinedPubKey))
// We can now assemble the witness stack.
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(t.t, err)
tx.TxIn[0].Witness = wire.TxWitness{
combineReq1.FinalSignature,
leaf.Script,
controlBlockBytes,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ctxt, t, net, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testScriptHashLock returns a simple bitcoin script that locks the funds to
// a hash lock of the given preimage.
func testScriptHashLock(t *testing.T, preimage []byte) txscript.TapLeaf {
@ -539,3 +1061,174 @@ func confirmAddress(ctx context.Context, t *harnessTest,
require.NotNil(t.t, conf)
require.Equal(t.t, conf.BlockHeight, uint32(currentHeight+1))
}
// deriveSigningKeys derives three signing keys and returns their descriptors,
// as well as the public keys in the Schnorr serialized format.
func deriveSigningKeys(ctx context.Context, t *harnessTest,
node *lntest.HarnessNode) (*signrpc.KeyDescriptor,
*signrpc.KeyDescriptor, *signrpc.KeyDescriptor, [][]byte) {
// For muSig2 we need multiple keys. We derive three of them from the
// same wallet, just so we know we can also sign for them again.
keyDesc1, err := node.WalletKitClient.DeriveNextKey(
ctx, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
)
require.NoError(t.t, err)
pubKey1, err := btcec.ParsePubKey(keyDesc1.RawKeyBytes)
require.NoError(t.t, err)
keyDesc2, err := node.WalletKitClient.DeriveNextKey(
ctx, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
)
require.NoError(t.t, err)
pubKey2, err := btcec.ParsePubKey(keyDesc2.RawKeyBytes)
require.NoError(t.t, err)
keyDesc3, err := node.WalletKitClient.DeriveNextKey(
ctx, &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily},
)
require.NoError(t.t, err)
pubKey3, err := btcec.ParsePubKey(keyDesc3.RawKeyBytes)
require.NoError(t.t, err)
// Now that we have all three keys we can create three sessions, one
// for each of the signers. This would of course normally not happen on
// the same node.
allPubKeys := [][]byte{
schnorr.SerializePubKey(pubKey1),
schnorr.SerializePubKey(pubKey2),
schnorr.SerializePubKey(pubKey3),
}
return keyDesc1, keyDesc2, keyDesc3, allPubKeys
}
// createMuSigSessions creates a MuSig2 session with three keys that are
// combined into a single key. The same node is used for the three signing
// participants but a separate key is generated for each session. So the result
// should be the same as if it were three different nodes.
func createMuSigSessions(ctx context.Context, t *harnessTest,
node *lntest.HarnessNode, taprootTweak *signrpc.TaprootTweakDesc,
keyDesc1, keyDesc2, keyDesc3 *signrpc.KeyDescriptor,
allPubKeys [][]byte) (*btcec.PublicKey, *btcec.PublicKey,
*signrpc.MuSig2SessionResponse, *signrpc.MuSig2SessionResponse,
*signrpc.MuSig2SessionResponse) {
sessResp1, err := node.SignerClient.MuSig2CreateSession(
ctx, &signrpc.MuSig2SessionRequest{
KeyLoc: keyDesc1.KeyLoc,
AllSignerPubkeys: allPubKeys,
TaprootTweak: taprootTweak,
},
)
require.NoError(t.t, err)
// Now that we have the three keys in a combined form, we want to make
// sure the tweaking for the taproot key worked correctly. We first need
// to parse the combined key without any tweaks applied to it. That will
// be our internal key. Once we know that, we can tweak it with the
// tapHash of the script root hash. We should arrive at the same result
// as the API.
combinedKey, err := schnorr.ParsePubKey(sessResp1.CombinedKey)
require.NoError(t.t, err)
// When combining the key without creating a session, we expect the same
// combined key to be created.
expectedCombinedKey := combinedKey
// Without a tweak, the internal key is equal to the combined key.
internalKey := combinedKey
// If there is a tweak, then there is the internal, pre-tweaked combined
// key and the taproot key which is fully tweaked.
if taprootTweak != nil {
internalKey, err = schnorr.ParsePubKey(
sessResp1.TaprootInternalKey,
)
require.NoError(t.t, err)
// We now know the taproot key. The session with the tweak
// applied should produce the same key!
expectedCombinedKey = txscript.ComputeTaprootOutputKey(
internalKey, taprootTweak.ScriptRoot,
)
require.Equal(
t.t, schnorr.SerializePubKey(expectedCombinedKey),
schnorr.SerializePubKey(combinedKey),
)
}
// We should also get the same keys when just calling the
// MuSig2CombineKeys RPC.
combineResp, err := node.SignerClient.MuSig2CombineKeys(
ctx, &signrpc.MuSig2CombineKeysRequest{
AllSignerPubkeys: allPubKeys,
TaprootTweak: taprootTweak,
},
)
require.NoError(t.t, err)
require.Equal(
t.t, schnorr.SerializePubKey(expectedCombinedKey),
combineResp.CombinedKey,
)
require.Equal(
t.t, schnorr.SerializePubKey(internalKey),
combineResp.TaprootInternalKey,
)
// Everything is good so far, let's continue with creating the signing
// session for the other two participants.
sessResp2, err := node.SignerClient.MuSig2CreateSession(
ctx, &signrpc.MuSig2SessionRequest{
KeyLoc: keyDesc2.KeyLoc,
AllSignerPubkeys: allPubKeys,
OtherSignerPublicNonces: [][]byte{
sessResp1.LocalPublicNonces,
},
TaprootTweak: taprootTweak,
},
)
require.NoError(t.t, err)
require.Equal(t.t, sessResp1.CombinedKey, sessResp2.CombinedKey)
sessResp3, err := node.SignerClient.MuSig2CreateSession(
ctx, &signrpc.MuSig2SessionRequest{
KeyLoc: keyDesc3.KeyLoc,
AllSignerPubkeys: allPubKeys,
OtherSignerPublicNonces: [][]byte{
sessResp1.LocalPublicNonces,
sessResp2.LocalPublicNonces,
},
TaprootTweak: taprootTweak,
},
)
require.NoError(t.t, err)
require.Equal(t.t, sessResp2.CombinedKey, sessResp3.CombinedKey)
require.Equal(t.t, true, sessResp3.HaveAllNonces)
// We need to distribute the rest of the nonces.
nonceResp1, err := node.SignerClient.MuSig2RegisterNonces(
ctx, &signrpc.MuSig2RegisterNoncesRequest{
SessionId: sessResp1.SessionId,
OtherSignerPublicNonces: [][]byte{
sessResp2.LocalPublicNonces,
sessResp3.LocalPublicNonces,
},
},
)
require.NoError(t.t, err)
require.Equal(t.t, true, nonceResp1.HaveAllNonces)
nonceResp2, err := node.SignerClient.MuSig2RegisterNonces(
ctx, &signrpc.MuSig2RegisterNoncesRequest{
SessionId: sessResp2.SessionId,
OtherSignerPublicNonces: [][]byte{
sessResp3.LocalPublicNonces,
},
},
)
require.NoError(t.t, err)
require.Equal(t.t, true, nonceResp2.HaveAllNonces)
return internalKey, combinedKey, sessResp1, sessResp2, sessResp3
}