lnd/lnrpc/chainrpc/chainnotifier.proto

183 lines
5.5 KiB
Protocol Buffer
Raw Normal View History

syntax = "proto3";
package chainrpc;
option go_package = "github.com/lightningnetwork/lnd/lnrpc/chainrpc";
// ChainNotifier is a service that can be used to get information about the
// chain backend by registering notifiers for chain events.
service ChainNotifier {
/*
RegisterConfirmationsNtfn is a synchronous response-streaming RPC that
registers an intent for a client to be notified once a confirmation request
has reached its required number of confirmations on-chain.
A client can specify whether the confirmation request should be for a
particular transaction by its hash or for an output script by specifying a
zero hash.
*/
rpc RegisterConfirmationsNtfn (ConfRequest) returns (stream ConfEvent);
/*
RegisterSpendNtfn is a synchronous response-streaming RPC that registers an
intent for a client to be notification once a spend request has been spent
by a transaction that has confirmed on-chain.
A client can specify whether the spend request should be for a particular
outpoint or for an output script by specifying a zero outpoint.
*/
rpc RegisterSpendNtfn (SpendRequest) returns (stream SpendEvent);
/*
RegisterBlockEpochNtfn is a synchronous response-streaming RPC that
registers an intent for a client to be notified of blocks in the chain. The
stream will return a hash and height tuple of a block for each new/stale
block in the chain. It is the client's responsibility to determine whether
the tuple returned is for a new or stale block in the chain.
A client can also request a historical backlog of blocks from a particular
point. This allows clients to be idempotent by ensuring that they do not
missing processing a single block within the chain.
*/
rpc RegisterBlockEpochNtfn (BlockEpoch) returns (stream BlockEpoch);
}
message ConfRequest {
/*
The transaction hash for which we should request a confirmation notification
for. If set to a hash of all zeros, then the confirmation notification will
be requested for the script instead.
*/
bytes txid = 1;
/*
An output script within a transaction with the hash above which will be used
by light clients to match block filters. If the transaction hash is set to a
hash of all zeros, then a confirmation notification will be requested for
this script instead.
*/
bytes script = 2;
/*
The number of desired confirmations the transaction/output script should
reach before dispatching a confirmation notification.
*/
uint32 num_confs = 3;
/*
The earliest height in the chain for which the transaction/output script
could have been included in a block. This should in most cases be set to the
broadcast height of the transaction/output script.
*/
uint32 height_hint = 4;
}
message ConfDetails {
// The raw bytes of the confirmed transaction.
bytes raw_tx = 1;
// The hash of the block in which the confirmed transaction was included in.
bytes block_hash = 2;
2020-03-02 15:35:25 +01:00
// The height of the block in which the confirmed transaction was included
// in.
uint32 block_height = 3;
// The index of the confirmed transaction within the transaction.
uint32 tx_index = 4;
}
message Reorg {
// TODO(wilmer): need to know how the client will use this first.
}
message ConfEvent {
oneof event {
/*
An event that includes the confirmation details of the request
(txid/ouput script).
*/
ConfDetails conf = 1;
/*
An event send when the transaction of the request is reorged out of the
chain.
*/
Reorg reorg = 2;
}
}
message Outpoint {
// The hash of the transaction.
bytes hash = 1;
// The index of the output within the transaction.
uint32 index = 2;
}
message SpendRequest {
/*
The outpoint for which we should request a spend notification for. If set to
a zero outpoint, then the spend notification will be requested for the
script instead.
*/
Outpoint outpoint = 1;
/*
The output script for the outpoint above. This will be used by light clients
to match block filters. If the outpoint is set to a zero outpoint, then a
spend notification will be requested for this script instead.
*/
bytes script = 2;
/*
The earliest height in the chain for which the outpoint/output script could
have been spent. This should in most cases be set to the broadcast height of
the outpoint/output script.
*/
uint32 height_hint = 3;
// TODO(wilmer): extend to support num confs on spending tx.
}
message SpendDetails {
// The outpoint was that spent.
Outpoint spending_outpoint = 1;
// The raw bytes of the spending transaction.
bytes raw_spending_tx = 2;
// The hash of the spending transaction.
bytes spending_tx_hash = 3;
// The input of the spending transaction that fulfilled the spend request.
uint32 spending_input_index = 4;
// The height at which the spending transaction was included in a block.
uint32 spending_height = 5;
}
message SpendEvent {
oneof event {
/*
An event that includes the details of the spending transaction of the
request (outpoint/output script).
*/
SpendDetails spend = 1;
/*
An event sent when the spending transaction of the request was
reorged out of the chain.
*/
Reorg reorg = 2;
}
}
message BlockEpoch {
// The hash of the block.
bytes hash = 1;
// The height of the block.
uint32 height = 2;
}