mirror of
https://github.com/ElementsProject/lightning.git
synced 2025-01-01 03:24:41 +01:00
2180ff0a72
Written by Christian Decker wth feedback from Shannon Appelcline. Special thanks to Fabrice Drouin of ACINQ fame for choosing the release name!
110 lines
7.0 KiB
Markdown
110 lines
7.0 KiB
Markdown
# Release Announce for 0.6
|
||
## a.k.a. "I Accidentally The Smart Contract"
|
||
|
||
The long wait is over: we, the c-lightning team, are excited to announce the 0.6 release of
|
||
[c-lightning][clightning], an important milestone for the project. This complete rewrite of the previous implementation is the first fully specification-compilation release of c-lightning. It migrates away from the protocol used while designing the specification and toward a new architecture that is modular and extensible, to better adapt to your needs and your infrastructure.
|
||
|
||
## New Features
|
||
|
||
While there are far too many new features in the 0.6 release to list, the following are the most interesting and impactful:
|
||
|
||
- __Lightweight nodes__: Previous releases required a full `bitcoind` node
|
||
running alongside c-lightning, to provide access to the Bitcoin network. This release still requires the `bitcoin-cli` utility to be present, but it
|
||
can now talk to remote nodes as well, including some lightweight nodes such
|
||
as [`spruned`][spruned]. This makes it possible to run a c-lightning node on
|
||
Raspberry Pis as well as other low-powered devices.
|
||
- The __gossip protocol__ has been updated to use a more lightweight bandwidth mechanism that
|
||
asks for specific information, rather than exchanging full network
|
||
Views as the previous release did. This is particular important for low-powered and mobile devices that
|
||
would otherwise spend a lot of bandwidth and energy downloading and
|
||
verifying information they already have.
|
||
- __API stability__: The c-lightning
|
||
JSON-RPC interface and supporting libraries have been redesigned in order to minimize
|
||
changes in future releases. This API stability should make it easy for other
|
||
projects to build on top of c-lightning because we will support this version of
|
||
the API for the foreseeable future, maintaining backward compatibility,
|
||
should we introduce any changes.
|
||
- __Wallet and sync__: c-lightning now includes a full-fledged wallet that
|
||
manages both on-chain and off-chain funds. There is no more raw
|
||
transaction handling! All funds are automatically tracked and returned to the
|
||
internal wallet as soon as possible, with no user interaction required. In
|
||
addition the blockchain tracking now maintains an internal view of the blockchain, ending long blockchain rescans.
|
||
- __TOR support__: c-lightning now supports connecting to nodes over the
|
||
TOR network, auto-registering as a hidden service, and accepting
|
||
incoming connections over TOR.
|
||
- The __payment logic__ has undergone a major overhaul to support automatic retries
|
||
for routing failures, randomization of route selection, and better feedback about
|
||
the current state of a payment.
|
||
- And as always: performance, performance, performance.
|
||
|
||
## Flexibility through Modularity
|
||
|
||
The c-lightning architecture is based on a number of independent communicating
|
||
processes, each with its own responsibilities. This allows better integration into
|
||
your infrastructure and better adaptation to your needs. Two
|
||
daemons that are global for all channels,`gossipd` and `hsmd`, are of particular note because of their modular design
|
||
|
||
`gossipd` manages a local view of the network and is tasked with finding a path
|
||
from the source of a payment to its destination. The default implementation
|
||
attempts to find a route with reasonable tradeoffs between fees, timeouts, and
|
||
stability. It also obfuscates the route by selecting randomly among a
|
||
number of candidate routes and tweaking the amounts and timeouts in order to
|
||
conceal the endpoints of a payment. The default implementation can easily be
|
||
switched out if you have particular routing requirements or want to
|
||
enforce a specific routing policy, such as always selecting the route with the lowest
|
||
timeouts or the lowest fees.
|
||
|
||
`hsmd` manages all operations that touch cryptographic materials and controls
|
||
the funds in the channel. It is the sole subsystem that has access to the node's
|
||
private key. This means that other subsystems do not hold any private
|
||
information and must communicate with the `hsmd` daemon to sign or decrypt
|
||
anything. Centralizing the cryptographic operations in this manner reduces the
|
||
surface that needs to be secured and opens up a number of interesting
|
||
applications. While the default `hsmd` implementation already provides good
|
||
security through process separation and the ability to further secure it via OS
|
||
level security, e.g., SELinux and AppArmor, it can be easily replaced with an implementation that talks to a physical HSM. Replacing the `hsmd`
|
||
implementation furthermore allows headless operation, e.g., running a
|
||
c-lightning node at home, with a paired mobile app managing the private keys
|
||
and initiating payments or creating invoices.
|
||
|
||
This separation of c-lightning functionality into multiple daemons is not only a big
|
||
improvement in flexibility, but also a robust improvement to node security, as it ensures that an attacker cannot directly
|
||
interface with anything that touches the private keys. Each subsystem
|
||
independently verifies the consistency of the internal state, disconnecting a
|
||
peer and killing its process if any inconsistency is detected. The multi-daemon
|
||
architecture also enables the use of Docker, SELinux and AppArmor to lock down
|
||
what information each daemon can access and what actions they can perform.
|
||
|
||
## What's Next?
|
||
|
||
Our work with c-lightning is far from done; we are constantly working on
|
||
[features][features] and [enhancements][enhancements], as well as improvements to
|
||
performance, stability and usability. Didn’t find your favorite feature? Have
|
||
some feedback that might be helpful? Why not file an [issue on
|
||
Github][gh-issue], drop us a line on the [mailing list][ml], or [contact us on
|
||
IRC][irc].
|
||
|
||
In parallel we are also contributing to the advancement of the Lightning specification
|
||
itself and are actively researching what the next iteration of the protocol could
|
||
look like through initiatives like our [eltoo][eltoo] proposal and upstream
|
||
Bitcoin proposals such as [`SIGHASH_NOINPUT`][sighash-noinput].
|
||
|
||
We'd like to thank the many contributors who have not only contributed code to
|
||
c-lightning, but also those who were #reckless enough to test and give feedback
|
||
about what works and what could be improved. And finally, we'd like to thank the
|
||
other Lightning Network teams, ACINQ and Lightning Labs, as well as all individual contributors
|
||
that pitched in to make the Lightning Network community such a pleasant, collaborative and open
|
||
environment!
|
||
|
||
[spruned]: https://github.com/gdassori/spruned
|
||
[clightning]: https://github.com/ElementsProject/lightning
|
||
[features]: https://github.com/ElementsProject/lightning/issues?q=is%3Aissue+is%3Aopen+label%3Afeature
|
||
[enhancements]: https://github.com/ElementsProject/lightning/issues?q=is%3Aissue+is%3Aopen+label%3Aenhancement
|
||
[irc]: irc://c-lightning@irc.freenode.net
|
||
[ml]: mailto:c-lightning@lists.ozlabs.org
|
||
[gh-issue]: https://github.com/ElementsProject/lightning/issues/new
|
||
[sighash-noinput]: https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
|
||
[eltoo]: https://blockstream.com/2018/04/30/eltoo-next-lightning.html
|
||
|
||
|