This is mainly an internal-only change, especially since we don't
offer any globalfeatures.
However, LND (as of next release) will offer global features, and also
expect option_static_remotekey to be a *global* feature. So we send
our (merged) feature bitset as both global and local in init, and fold
those bitsets together when we get an init msg.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We weren't supposed to do any gossiping until we were synced (and thus
knew blockheight), but our seeker_check() didn't wait for it! Move the
waiting all into seeker.c, so it can handle it all consistently.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It usually means we're missing something, but there's no way to ask what.
Simply start a broad scid probe.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We assume that the time for gossip propagation is < 10 minutes, so by
going back that far from last gossip we won't miss anything,
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We eliminate the "need peer" states and instead check if the
random_peer_softref has been cleared.
We can also unify our restart handlers for all these cases; even the
probe_scids case, by giving gossip credit for the scids as they come
in (at a discount, since scids are 8 bytes vs the ~200 bytes for
normal gossip messages).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of a linear array which is fairly inefficient if it turns out
we know nothing at all.
We remove the gossip_missing() call by changing the api to
remove_unknown_scid() to include a flag as to whether the scid turned
out to be real or not.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The seeker starts by asking a peer (the first peer!) for all gossip
since a minute before the modified time of the gossip store.
This algorithm is enhanced in successive patches.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since we have to validate, there can be a delay (and peer might
vanish) between receiving the gossip and actually confirming it, hence
the use of softref.
We will use this information to check that the peers are making progress
as we start asking them for specific information.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is the modified-time of the file. We have to store it internally
since we overwrite the gossip file with compaction on startup.
This means the "are we behind on gossip?" heuristic is no longer inside
gossip_store.c, which is cleaner.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We now have a pointer to chainparams, that fails valgrind if we do anything
chain-specific before setting it.
Suggested-by: Rusty Russell <@rustyrussell>
We do this by keeping a current and an old map, and moving the current to old
every hour or 10,000 entries.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I was seeing some accidental pruning under load / Travis, and in
particular we stopped accepting channel_updates because they were 103
seconds old. But making it too long makes the prune test untenable,
so restore a separate flag that this test can use.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The only real change is dump_gossip() used to call
maybe_create_next_scid_reply(), but now I've simply renamed
that to maybe_send_query_responses() and we call it directly.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The first one means we don't discard channels just because we're not
synced, and the second is implied by the spec: don't accept
channel_announcement if the channel isn't 6 deep. Since LND defers in
such cases, we do too (unless it's newer than the current block, in
which case we simply discard). Otherwise there's a risk that a slow
node might discard valid gossip.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This will let gossipd be more intelligent about gossiping before we're
synced, and also it might know how far behind we are.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's generally clearer to have simple hardcoded numbers with an
#if DEVELOPER around it, than apparent variables which aren't, really.
Interestingly, our pruning test was always kinda broken: we have to pass
two cycles, since l2 will refresh the channel once to avoid pruning.
Do the more obvious thing, and cut the network in half and check that
l1 and l3 time out.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Make update_local_channel use a timer if it's too soon to make another
update.
1. Implement cupdate_different() which compares two updates.
2. make update_local_channel() take a single arg for timer usage.
3. Set timestamp of non-disable update back 5 minutes, so we can
always generate a disable update if we need to.
4. Make update_local_channel() itself do the "unchanged update" suppression.
gossipd: clean up local channel updates.
5. Keep pointer to the current timer so we override any old updates with
a new one, to avoid a race.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Write helpers to split it into non-timestamp, non-signature parts,
and simply compare those. We extract a helper to do channel_update, too.
This is more generic than our previous approach, and simpler.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We've been slack, but it's going to be important for testing
ratelimiting. And it currently has a minor memory leak.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather than reaching into data structures, let them register their own
callbacks. This avoids us having to expose "memleak_remove_xxx"
functions, and call them manually.
Under the hood, this is done by having a specially-named tal child of
the thing we want to assist, containing the callback.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Fortunately, again, only happens with EXPERIMENTAL_FEATURES.
If the query causes us not to actually send anything, we won't
get called again. This can validly happen if they only asked for
the node_announcements, for example.
(Found by protocol tests).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Our "are we finished?" logic was wrong: it tested if there are no more
node_announcements, but it's possible that there were no node_announcements
for either end of the channel whose information we sent.
This is actually quite unusual on the real network: looking at mainnet
statis from last May, 4301 of 4337 nodes have node_announcements.
However, with query flags it's much more likely, since they might not
ask for node announcements at all.
(Found by gossip protocol tests)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>