This is what it actually is, and makes it clearer when we refer to the
spec. It's the commitment we're currently updating, which is the next
commitment.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We keep the scriptpubkey to send until after a commitment_signed (or,
in the corner case, if there's no pending commitment). When we
receive a shutdown from the peer, we pass it up to the master.
It's up to the master not to add any more HTLCs, which works because
we move from CHANNELD_NORMAL to CHANNELD_SHUTTING_DOWN.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We don't need to keep this around any more: by handing it to
subdaemons we ensure we'll close it if the peer disconnects, and we
also add code to get a new one on reconnection.
Because getting a gossip_fd is async, we re-check the peer state after
it gets back. This is kind of annoying: perhaps if we were to hand
the reconnected peer through gossipd (with a flag to immediately
return it) we could get the gossip fd that way and unify the paths?
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Now we're always sync, just use an fd. Put the hsm_sync_read() helper
here, too, and do HSM init sync which makes things much simpler.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
With no async calls left, we can just use a stack variable for the fd.
And we're now *always* in the hands of some daemon, unless we're
disconnected, so owner is only NULL in that case.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We had a terrible hack in gossip when a peer didn't exist. Formalize
a pattern when code+200 is a failure (with no fds passed), and use it
here.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This means there's no GETTING_HSMFD state at all any more. We
temporarily play games with the hsm fd; those will go away once we're
done.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This means there's no GETTING_SIG_FROM_HSM state at all any more. We
temporarily play games with the hsm fd; those will go away once we're
done.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We'll re-use them a few times so having them at a central location is
nice. We also fix a bug that was unreserving UTXO entries upon free,
instead of promoting them to being spent.
This matters in one case: channeld receiving a bad message is a
permenant failure, whereas losing a connection is transient.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We need the old remote per_commitment_point so we can validate the
per_commitment_secret when we get it.
We unify this housekeeping in the master daemon using
update_per_commit_point().
This patch also saves whether remote funding is locked, and disallows
doing that twice (channeld should ignore it).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's easiest to have the master keep the last commit we sent, for
re-transmission. We could recalculate it, but it's made more difficult
by the before/after revoke case.
And because revoke_and_ack changes the channel state, we need to
remember which order we sent them in for re-transmission.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We need this for reestablishing a channel.
(Note: this patch changes quite a bit in this series, but reshuffling was
tedious).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently it's fairly ad-hoc, but we need to tell it to channeld when
it restarts, so we define it as the non-HTLC balance.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It needs to save them to the db in case of restart; this means we tell
it about funding_locked, as well as the next_per_commit_point given
in revoke_and_ack.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
When adding their HTLCs, it needs all the information. When failing,
it needs the id as key and the failure reason. When fulfilling, it
needs the id and payment preimage.
It also needs to know when we have received an revoke_and_ack or a
commitment_signed, to place in the database.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We still get the shared secret, since that requires a round trip to the HSM
(why waste the master daemon's time?) but it does the processing, which
simplifies the message passing and things like realm handling which
have nothing to do with this particular channeld.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Some paths were still sending unencrypted failure messages; unify them
all. We need to keep the fail_msg around for resubmission if the
channeld dies; similarly, we need to keep the htlc_end structure
itself after failure, in case the failed HTLC is committed: we can
move it to a minimal archive once it's flushed from both sides,
however.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We used level -1 to mean "append to log", but that doesn't actually
work, and results in an assert if we try to prune the logs:
lightningd: daemon/pseudorand.c:36: pseudorand: Assertion `max' failed.
Expose logv_add and use that.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We use --log-level to control this, but we could add another switch.
It makes the test infrastructure simpler, since we can just look in the
main logs.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I actually hit this very hard to reproduce race: if we haven't process
the channeld message when block #6 comes in, we won't send the gossip
message. We wait for logs, but don't generate new blocks, and timeout
on l1.daemon.wait_for_log('peer_out WIRE_ANNOUNCEMENT_SIGNATURES').
The solution, which also tests that we don't send announcement signatures
immediately, is to generate a single block, wait for CHANNELD_NORMAL,
then (in gossip tests), generate 5 more.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We use this to make it send the funding_signed message, rather than having
the master daemon do it (which was even more hacky). It also means it
can handle the crypto, so no need for the packet to be handed up encrypted,
and also make --dev-disconnect "just work" for this packet.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is simpler than passing back and forth, for the moment at least. That
means we don't need to ask for a new one on reconnect.
This partially reverts the gossip handling in openingd, since it no longer
passes the gossip fd back. We also close it when peer is freed, so it
needs initializing to -1.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We can go to release a gossip peer, and it can fail at the same time.
We work around the problem that the reply must be a gossipctl_release_peer_reply
with two fds, but it's not pretty.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We kill the existing connection if possible; this may mean simply
forgetting the prior peer altogether if it's in an early state.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead, send it the funding_signed message; it can watch, save to
database, and send it.
Now the openingd fundee path is a simple request and response, too.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Simplifies state machine. Master still has to calculate the tx to get
the signature and broadcast, but now the opening daemon funding path
is a simple request/response.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Like the fd, it's only useful when the peer is not in a daemon, so we
free & NULL it when that happens.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
1. We explicitly assert what state we're coming from, to make transitions
clearer.
2. Every transition has a state, even between owners while waiting for HSM.
3. Explictly step though getting the HSM signature on the funding tx
before starting channeld, rather than doing it in parallel: makes
states clearer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We currently create a peer struct, then complete handshake to find out
who it is. This means we have a half-formed peer, and worse: if it's
a reconnect we get two peers the same.
Add an explicit 'struct connection' for the handshake phase, and
construct a 'struct peer' once that's done.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather a big commit, but I couldn't figure out how to split it
nicely. It introduces a new message from the channel to the master
signaling that the channel has been announced, so that the master can
take care of announcing the node itself. A provisorial announcement is
created and passed to the HSM, which signs it and passes it back to
the master. Finally the master injects it into gossipd which will take
care of broadcasting it.
We alternated between using a sha256 and using a privkey, but there are
numerous places where we have a random 32 bytes which are neither.
This fixes many of them (plus, struct privkey is now defined in terms of
struct secret).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Under stress, the tests can mine blocks too soon, and the funding never
locks. This gives more of a chance, at least.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We were getting an assert "!secp256k1_fe_is_zero(&ge->x)", because
an all-zero pubkey is invalid. We allow marshal/unmarshal of NULL for
now, and clean up the error handling.
1. Use status_failed if master sends a bad message.
2. Similarly, kill the gossip daemon if it gives a bad reply.
3. Use an array for returned pubkeys: 0 or 2.
4. Use type_to_string(trc, struct short_channel_id, &scid) for tracing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I implemented this because a bug causes us to consider the HTLC malformed,
so I can trivially test it for now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since we now use the short_channel_id to identify the next hop we need
to resolve the channel_id to the pubkey of the next hop. This is done
by calling out to `gossipd` and stuffing the necessary information
into `htlc_end` and recovering it from there once we receive a reply.
Mainly switching from the old include to the new include and adjusting
the actual size of the onion packet. It also moves `channel.c` to use
`struct hop_data`.
It introduces a dummy next hop in `channel.c` that will be replaced in
the next commit.
Only the side *accepting* the connection gives a `minumum_depth`, but both
sides are supposed to wait that long:
BOLT #2:
### The `funding_locked` message
...
#### Requirements
The sender MUST wait until the funding transaction has reached
`minimum-depth` before sending this message.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of reusing HSMFD_ECDH, we have an explicit channeld hsm fd,
which can do ECDH and will soon do channel announce signatures as well.
Based-on: Christian Decker <decker.christian@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This lets us link HTLCs from one peer to another; but for the moment it
simply means we can adjust balance when an HTLC is fulfilled.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is an approximate result (it's only our confirmed balance, not showing
outstanding HTLCs), but it gives an easy way to check HTLCs have been
resolved.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
If a peer dies, and then we get a reply, that can cause access after free.
The usual way to handle this is to make the request a child of the peer,
but in fact we still want to catch (and disard) it, so it's a little
more complex internally.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The gossip subdaemon previously passed the fd after init: this is
unnecessary for peers which simply want to gossip (and not establish
channels).
Now we hand the gossip fd back with the peer fd. This adds another
error message for when we fail to create the gossip fds.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of indicating where to place the fd, you say how many: the
fd array gets passed into the callback.
This is also clearer for the users.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We should start watching for the transaction before we send the
signature; we might miss it otherwise. In practice, we only see
transactions as they enter a block, so it won't happen, but be
thorough.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is a bit tricky: for our signing code, we don't want scriptsigs,
but to calculate the txid, we need them. For most transactions in lightning,
they're pure segwit so it doesn't matter, but funding transactions can
have P2SH-wrapped P2WPKH inputs.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
built_utxos needs to calculate fees for figuring out how many utxos to
use, so fix that logic and rely on it.
We make build_utxos return a pointer array, so funding_tx can simply hand
that to permute_inputs.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Only minor changes, but I add some more spec text to
lightningd/test/run-commit_tx.c to be sure to catch if it changes
again.
One reference isn't upstream yet, so had to be commented out.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Raw crypto_state is what we send across the wire: the peer one is for
use in async crypto io routines (peer_read_message/peer_write_message).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's awkward to handle them differently. But this change means we
need to expose them to the generated code.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Now we hand peers off to the gossip daemon, to do the INIT handshake and
re-transmit/receive gossip. They may stay there forever if neither we nor
them wants to open a channel.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's a bit messy, since some status messages are accompanied by an FD:
in this case, the handler returns STATUS_NEED_FD and we read that then
re-call the handler.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>