core-lightning/common/cryptomsg.c

399 lines
11 KiB
C
Raw Normal View History

#include <assert.h>
#include <ccan/build_assert/build_assert.h>
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/mem/mem.h>
#include <ccan/take/take.h>
#include <common/cryptomsg.h>
#include <common/dev_disconnect.h>
#include <common/status.h>
#include <common/utils.h>
#include <sodium/crypto_aead_chacha20poly1305.h>
#include <wire/peer_wire.h>
#include <wire/wire.h>
#include <wire/wire_io.h>
static void hkdf_two_keys(struct secret *out1, struct secret *out2,
const struct secret *in1,
const struct secret *in2)
{
/* BOLT #8:
*
* * `HKDF(salt,ikm)`: a function defined in
* `RFC 5869`<sup>[3](#reference-3)</sup>, evaluated with a
* zero-length `info` field
* * All invocations of `HKDF` implicitly return 64 bytes of
* cryptographic randomness using the extract-and-expand component
* of the `HKDF`.
*/
struct secret okm[2];
BUILD_ASSERT(sizeof(okm) == 64);
hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, sizeof(*in2),
NULL, 0);
*out1 = okm[0];
*out2 = okm[1];
}
static void maybe_rotate_key(u64 *n, struct secret *k, struct secret *ck)
{
struct secret new_k, new_ck;
/* BOLT #8:
*
* A key is to be rotated after a party sends or decrypts
* 1000 messages with it. This can be properly accounted
* for by rotating the key once the nonce dedicated to it
* exceeds 1000.
*/
if (*n != 1000)
return;
/* BOLT #8:
*
* Key rotation for a key `k` is performed according to the following:
*
* 1. Let `ck` be the chaining key obtained at the end of Act Three.
* 2. `ck', k' = HKDF(ck, k)`
* 3. Reset the nonce for the key to `n = 0`.
* 4. `k = k'`
* 5. `ck = ck'`
*/
hkdf_two_keys(&new_ck, &new_k, ck, k);
#ifdef SUPERVERBOSE
status_trace("# 0x%s, 0x%s = HKDF(0x%s, 0x%s)",
tal_hexstr(trc, &new_ck, sizeof(new_ck)),
tal_hexstr(trc, &new_k, sizeof(new_k)),
tal_hexstr(trc, ck, sizeof(*ck)),
tal_hexstr(trc, k, sizeof(*k)));
#endif
*ck = new_ck;
*k = new_k;
*n = 0;
}
static void le64_nonce(unsigned char *npub, u64 nonce)
{
/* BOLT #8:
*
* ...with nonce `n` encoded as 32 zero bits, followed by a
* *little-endian* 64-bit value (this follows the Noise Protocol
* convention, rather than our normal endian).
*/
le64 le_nonce = cpu_to_le64(nonce);
const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce);
BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce));
/* First part is 0, followed by nonce. */
memset(npub, 0, zerolen);
memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce));
}
u8 *cryptomsg_decrypt_body(const tal_t *ctx,
struct crypto_state *cs, const u8 *in)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long mlen;
size_t inlen = tal_count(in);
u8 *decrypted;
if (inlen < 16)
return NULL;
decrypted = tal_arr(ctx, u8, inlen - 16);
le64_nonce(npub, cs->rn++);
/* BOLT #8:
*
* 5. Decrypt `c` (using `ChaCha20-Poly1305`, `rn`, and `rk`), to
* obtain decrypted plaintext packet `p`.
* * The nonce `rn` MUST be incremented after this step.
*/
if (crypto_aead_chacha20poly1305_ietf_decrypt(decrypted,
&mlen, NULL,
memcheck(in, inlen),
inlen,
NULL, 0,
npub, cs->rk.data) != 0) {
/* FIXME: Report error! */
return tal_free(decrypted);
}
assert(mlen == tal_count(decrypted));
maybe_rotate_key(&cs->rn, &cs->rk, &cs->r_ck);
return decrypted;
}
static struct io_plan *peer_decrypt_body(struct io_conn *conn,
struct peer_crypto_state *pcs)
{
struct io_plan *plan;
u8 *in, *decrypted;
pcs->reading_body = false;
decrypted = cryptomsg_decrypt_body(pcs->in, &pcs->cs, pcs->in);
if (!decrypted)
return io_close(conn);
status_peer_io(LOG_IO_IN, decrypted);
/* BOLT #1:
*
* A receiving node:
* - upon receiving a message of _odd_, unknown type:
* - MUST ignore the received message.
*/
if (unlikely(is_unknown_msg_discardable(decrypted))) {
pcs->in = tal_free(pcs->in);
return peer_read_message(conn, pcs, pcs->next_in);
}
/* Steal cs->in: we free it after, and decrypted too unless
* they steal but be careful not to touch anything after
* next_in (could free itself) */
in = tal_steal(NULL, pcs->in);
pcs->in = NULL;
plan = pcs->next_in(conn, pcs->peer, decrypted);
tal_free(in);
return plan;
}
bool cryptomsg_decrypt_header(struct crypto_state *cs, u8 hdr[18], u16 *lenp)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long mlen;
be16 len;
le64_nonce(npub, cs->rn++);
/* BOLT #8:
*
* 2. Let the encrypted length prefix be known as `lc`
* 3. Decrypt `lc` (using `ChaCha20-Poly1305`, `rn`, and `rk`), to
* obtain the size of the encrypted packet `l`.
* * A zero-length byte slice is to be passed as the AD
* (associated data).
* * The nonce `rn` MUST be incremented after this step.
*/
if (crypto_aead_chacha20poly1305_ietf_decrypt((unsigned char *)&len,
&mlen, NULL,
memcheck(hdr, 18), 18,
NULL, 0,
npub, cs->rk.data) != 0) {
/* FIXME: Report error! */
return false;
}
assert(mlen == sizeof(len));
*lenp = be16_to_cpu(len);
return true;
}
static struct io_plan *peer_decrypt_header(struct io_conn *conn,
struct peer_crypto_state *pcs)
{
u16 len;
if (!cryptomsg_decrypt_header(&pcs->cs, pcs->in, &len))
return io_close(conn);
tal_free(pcs->in);
pcs->reading_body = true;
/* BOLT #8:
*
* 4. Read _exactly_ `l+16` bytes from the network buffer, let
* the bytes be known as `c`.
*/
pcs->in = tal_arr(conn, u8, (u32)len + 16);
return io_read(conn, pcs->in, tal_count(pcs->in), peer_decrypt_body,
pcs);
}
struct io_plan *peer_read_message(struct io_conn *conn,
struct peer_crypto_state *pcs,
struct io_plan *(*next)(struct io_conn *,
struct peer *,
u8 *msg))
{
assert(!pcs->in);
/* BOLT #8:
*
* ### Receiving and Decrypting Messages
*
* In order to decrypt the _next_ message in the network
* stream, the following is done:
*
* 1. Read _exactly_ 18 bytes from the network buffer.
*/
pcs->reading_body = false;
pcs->in = tal_arr(conn, u8, 18);
pcs->next_in = next;
return io_read(conn, pcs->in, 18, peer_decrypt_header, pcs);
}
static struct io_plan *peer_write_done(struct io_conn *conn,
struct peer_crypto_state *pcs)
{
pcs->out = tal_free(pcs->out);
return pcs->next_out(conn, pcs->peer);
}
u8 *cryptomsg_encrypt_msg(const tal_t *ctx,
struct crypto_state *cs,
const u8 *msg TAKES)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long clen, mlen = tal_count(msg);
be16 l;
int ret;
u8 *out;
out = tal_arr(ctx, u8, sizeof(l) + 16 + mlen + 16);
/* BOLT #8:
*
* In order to encrypt and send a Lightning message (`m`) to the
* network stream, given a sending key (`sk`) and a nonce (`sn`), the
* following is done:
*
* 1. let `l = len(m)`
* * where `len` obtains the length in bytes of the Lightning
* message
*
* 2. Serialize `l` into 2 bytes encoded as a big-endian integer.
*/
l = cpu_to_be16(mlen);
/* BOLT #8:
*
* 3. Encrypt `l` (using `ChaChaPoly-1305`, `sn`, and `sk`), to obtain
* `lc` (18 bytes)
* * The nonce `sn` is encoded as a 96-bit little-endian number. As
* the decoded nonce is 64 bits, the 96-bit nonce is encoded as:
* 32 bits of leading zeroes followed by a 64-bit value.
* * The nonce `sn` MUST be incremented after this step.
* * A zero-length byte slice is to be passed as the AD (associated
data).
*/
le64_nonce(npub, cs->sn++);
ret = crypto_aead_chacha20poly1305_ietf_encrypt(out, &clen,
(unsigned char *)
memcheck(&l, sizeof(l)),
sizeof(l),
NULL, 0,
NULL, npub,
cs->sk.data);
assert(ret == 0);
assert(clen == sizeof(l) + 16);
#ifdef SUPERVERBOSE
status_trace("# encrypt l: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s",
tal_hexstr(trc, &l, sizeof(l)),
tal_hexstr(trc, npub, sizeof(npub)),
tal_hexstr(trc, &cs->sk, sizeof(cs->sk)),
tal_hexstr(trc, out, clen));
#endif
/* BOLT #8:
*
* 4. Finally, encrypt the message itself (`m`) using the same
* procedure used to encrypt the length prefix. Let
* encrypted ciphertext be known as `c`.
*
* * The nonce `sn` MUST be incremented after this step.
*/
le64_nonce(npub, cs->sn++);
ret = crypto_aead_chacha20poly1305_ietf_encrypt(out + clen, &clen,
memcheck(msg, mlen),
mlen,
NULL, 0,
NULL, npub,
cs->sk.data);
assert(ret == 0);
assert(clen == mlen + 16);
#ifdef SUPERVERBOSE
status_trace("# encrypt m: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s",
tal_hexstr(trc, msg, mlen),
tal_hexstr(trc, npub, sizeof(npub)),
tal_hexstr(trc, &cs->sk, sizeof(cs->sk)),
tal_hexstr(trc, out + 18, clen));
#endif
maybe_rotate_key(&cs->sn, &cs->sk, &cs->s_ck);
if (taken(msg))
tal_free(msg);
return out;
}
#if DEVELOPER
static struct io_plan *peer_write_postclose(struct io_conn *conn,
struct peer_crypto_state *pcs)
{
pcs->out = tal_free(pcs->out);
dev_sabotage_fd(io_conn_fd(conn));
return pcs->next_out(conn, pcs->peer);
}
#endif
struct io_plan *peer_write_message(struct io_conn *conn,
struct peer_crypto_state *pcs,
const u8 *msg,
struct io_plan *(*next)(struct io_conn *,
struct peer *))
{
struct io_plan *(*post)(struct io_conn *, struct peer_crypto_state *);
#if DEVELOPER
int type = fromwire_peektype(msg);
#endif
assert(!pcs->out);
/* Important: this doesn't take msg! */
status_peer_io(LOG_IO_OUT, msg);
pcs->out = cryptomsg_encrypt_msg(conn, &pcs->cs, msg);
pcs->next_out = next;
post = peer_write_done;
#if DEVELOPER
switch (dev_disconnect(type)) {
case DEV_DISCONNECT_BEFORE:
dev_sabotage_fd(io_conn_fd(conn));
break;
case DEV_DISCONNECT_DROPPKT:
pcs->out = NULL; /* FALL THRU */
case DEV_DISCONNECT_AFTER:
post = peer_write_postclose;
break;
case DEV_DISCONNECT_BLACKHOLE:
dev_blackhole_fd(io_conn_fd(conn));
break;
case DEV_DISCONNECT_NORMAL:
break;
}
#endif /* DEVELOPER */
/* BOLT #8:
* 5. Send `lc || c` over the network buffer.
*/
return io_write(conn, pcs->out, tal_count(pcs->out), post, pcs);
}
/* We read in two parts, so we might have started body. */
bool peer_in_started(const struct io_conn *conn,
const struct peer_crypto_state *cs)
{
return io_plan_in_started(conn) || cs->reading_body;
}
void init_peer_crypto_state(struct peer *peer, struct peer_crypto_state *pcs)
{
pcs->peer = peer;
pcs->out = pcs->in = NULL;
pcs->reading_body = false;
}