lightningd/cryptomsg: routines to encrypt on the wire.

After the handshake, it's a simple matter of AEAD and key rotation.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
Rusty Russell 2017-01-10 15:38:33 +10:30
parent faebb87d01
commit a7f682c66e
3 changed files with 350 additions and 4 deletions

View File

@ -8,7 +8,7 @@ lightningd-all: lightningd/lightningd
default: lightningd-all
LIGHTNINGD_LIB_SRC := \
LIGHTNINGD_OLD_SRC := \
daemon/configdir.c \
daemon/json.c \
daemon/log.c \
@ -17,8 +17,14 @@ LIGHTNINGD_LIB_SRC := \
daemon/pseudorand.c \
daemon/routing.c \
daemon/watch.c
LIGHTNINGD_OLD_OBJS := $(LIGHTNINGD_OLD_SRC:.c=.o)
LIGHTNINGD_OLD_HEADERS := $(LIGHTNINGD_OLD_SRC:.c=.h)
LIGHTNINGD_LIB_SRC := \
lightningd/cryptomsg.c
LIGHTNINGD_LIB_OBJS := $(LIGHTNINGD_LIB_SRC:.c=.o)
LIGHTNINGD_LIB_HEADERS := $(LIGHTNINGD_LIB_SRC:.c=.h)
LIGHTNINGD_SRC := \
lightningd/lightningd.c \
@ -32,7 +38,7 @@ LIGHTNINGD_JSMN_HEADERS := daemon/jsmn/jsmn.h
LIGHTNINGD_HEADERS := lightningd/lightningd.h \
lightningd/subdaemon.h
$(LIGHTNINGD_OBJS): $(LIGHTNINGD_HEADERS) $(LIGHTNINGD_JSMN_HEADERS) $(BITCOIN_HEADERS) $(CORE_HEADERS) $(GEN_HEADERS) $(CCAN_HEADERS) $(DAEMON_HEADERS) $(LIBBASE58_HEADERS)
$(LIGHTNINGD_OBJS) $(LIGHTNINGD_LIB_OBJS): $(LIGHTNINGD_HEADERS) $(LIGHTNINGD_JSMN_HEADERS) $(BITCOIN_HEADERS) $(CORE_HEADERS) $(GEN_HEADERS) $(CCAN_HEADERS) $(DAEMON_HEADERS) $(LIBBASE58_HEADERS)
check-source: $(LIGHTNINGD_SRC:%=check-src-include-order/%)
check-source: $(LIGHTNINGD_LIB_SRC:%=check-src-include-order/%)
@ -40,12 +46,12 @@ check-source: $(LIGHTNINGD_CLI_SRC:%=check-src-include-order/%)
check-source: $(LIGHTNINGD_HEADERS:%=check-hdr-include-order/%)
check-source-bolt: $(LIGHTNINGD_SRC:%=bolt-check/%) $(LIGHTNINGD_HEADERS:%=bolt-check/%)
check-whitespace: $(LIGHTNINGD_SRC:%=check-whitespace/%) $(LIGHTNINGD_HEADERS:%=check-whitespace/%)
check-whitespace: $(LIGHTNINGD_SRC:%=check-whitespace/%) $(LIGHTNINGD_HEADERS:%=check-whitespace/%) $(LIGHTNINGD_LIB_SRC:%=check-whitespace/%) $(LIGHTNINGD_LIB_HEADERS:%=check-whitespace/%)
check-lightningd-makefile:
@if [ "`ls lightningd/*.h | grep -v lightningd/gen | tr '\012' ' '`" != "`echo $(LIGHTNINGD_HEADERS) ''`" ]; then echo LIGHTNINGD_HEADERS incorrect; exit 1; fi
lightningd/lightningd: $(LIGHTNINGD_OBJS) $(LIGHTNINGD_LIB_OBJS) $(LIGHTNINGD_JSMN_OBJS) $(CORE_OBJS) $(BITCOIN_OBJS) $(WIRE_OBJS) $(CCAN_OBJS) $(LIBBASE58_OBJS) libsecp256k1.a
lightningd/lightningd: $(LIGHTNINGD_OBJS) $(LIGHTNINGD_OLD_OBJS) $(LIGHTNINGD_LIB_OBJS) $(LIGHTNINGD_JSMN_OBJS) $(CORE_OBJS) $(BITCOIN_OBJS) $(WIRE_OBJS) $(CCAN_OBJS) $(LIBBASE58_OBJS) libsecp256k1.a
clean: lightningd-clean

308
lightningd/cryptomsg.c Normal file
View File

@ -0,0 +1,308 @@
#include <assert.h>
#include <ccan/build_assert/build_assert.h>
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/mem/mem.h>
#include <ccan/short_types/short_types.h>
#include <lightningd/cryptomsg.h>
#include <sodium/crypto_aead_chacha20poly1305.h>
#include <status.h>
#include <utils.h>
#include <wire/wire_io.h>
struct crypto_state {
/* Received and sent nonces. */
u64 rn, sn;
/* Sending and receiving keys. */
struct sha256 sk, rk;
/* Chaining key for re-keying */
struct sha256 s_ck, r_ck;
/* Peer who owns us: peer->crypto_state == this */
struct peer *peer;
/* Output and input buffers. */
u8 *out, *in;
struct io_plan *(*next_in)(struct io_conn *, struct peer *, u8 *);
struct io_plan *(*next_out)(struct io_conn *, struct peer *);
};
static void hkdf_two_keys(struct sha256 *out1, struct sha256 *out2,
const struct sha256 *in1,
const struct sha256 *in2)
{
/* BOLT #8:
*
* * `HKDF(salt,ikm)`: a function is defined in [5](#reference-5),
* evaluated with a zero-length `info` field.
* * All invocations of the `HKDF` implicitly return `64-bytes`
* of cryptographic randomness using the extract-and-expand
* component of the `HKDF`.
*/
struct sha256 okm[2];
BUILD_ASSERT(sizeof(okm) == 64);
hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, sizeof(*in2),
NULL, 0);
*out1 = okm[0];
*out2 = okm[1];
}
static void maybe_rotate_key(u64 *n, struct sha256 *k, struct sha256 *ck)
{
struct sha256 new_k, new_ck;
/* BOLT #8:
*
* A key is to be rotated after a party sends of decrypts
* `1000` messages with it. This can be properly accounted
* for by rotating the key once the nonce dedicated to it
* exceeds `1000`.
*/
if (*n != 1000)
return;
/* BOLT #8:
*
* Key rotation for a key `k` is performed according to the following:
*
* * Let `ck` be the chaining key obtained at the end of `Act Three`.
* * `ck', k' = HKDF(ck, k)`
* * Reset the nonce for the key to `n = 0`.
* * `k = k'`
* * `ck = ck'`
*/
hkdf_two_keys(&new_ck, &new_k, ck, k);
status_trace("# 0x%s, 0x%s = HKDF(0x%s, 0x%s)",
tal_hexstr(trc, &new_ck, sizeof(new_ck)),
tal_hexstr(trc, &new_k, sizeof(new_k)),
tal_hexstr(trc, ck, sizeof(*ck)),
tal_hexstr(trc, k, sizeof(*k)));
*ck = new_ck;
*k = new_k;
*n = 0;
}
static void le64_nonce(unsigned char *npub, u64 nonce)
{
/* BOLT #8:
*
* ...with nonce `n` encoded as 32 zero bits followed by a
* *little-endian* 64-bit value (this follows the Noise Protocol
* convention, rather than our normal endian).
*/
le64 le_nonce = cpu_to_le64(nonce);
const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce);
BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce));
/* First part is 0, followed by nonce. */
memset(npub, 0, zerolen);
memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce));
}
static struct io_plan *peer_decrypt_body(struct io_conn *conn,
struct crypto_state *cs)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long mlen;
u8 *decrypted = tal_arr(cs->in, u8, tal_count(cs->in) - 16), *in;
struct io_plan *plan;
le64_nonce(npub, cs->rn++);
/* BOLT #8:
*
* * Decrypt `c` using `ChaCha20-Poly1305`, `rn`, and `rk` to
* obtain decrypted plaintext packet `p`.
*
* * The nonce `rn` MUST be incremented after this step.
*/
if (crypto_aead_chacha20poly1305_ietf_decrypt(decrypted,
&mlen, NULL,
memcheck(cs->in,
tal_count(cs->in)),
tal_count(cs->in),
NULL, 0,
npub, cs->rk.u.u8) != 0) {
/* FIXME: Report error! */
return io_close(conn);
}
assert(mlen == tal_count(decrypted));
maybe_rotate_key(&cs->rn, &cs->rk, &cs->r_ck);
/* Steal cs->in: we free it after, and decrypted too unless
* they steal but be careful not to touch anything after
* next_in (could free itself) */
in = tal_steal(NULL, cs->in);
cs->in = NULL;
plan = cs->next_in(conn, cs->peer, decrypted);
tal_free(in);
return plan;
}
static struct io_plan *peer_decrypt_header(struct io_conn *conn,
struct crypto_state *cs)
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long mlen;
be16 len;
le64_nonce(npub, cs->rn++);
/* BOLT #8:
*
* * Let the encrypted length prefix be known as `lc`
*
* * Decrypt `lc` using `ChaCha20-Poy1305`, `rn`, and `rk` to
* obtain size of the encrypted packet `l`.
* * A zero-length byte slice is to be passed as the AD
* (associated data).
* * The nonce `rn` MUST be incremented after this step.
*/
if (crypto_aead_chacha20poly1305_ietf_decrypt((unsigned char *)&len,
&mlen, NULL,
memcheck(cs->in,
tal_count(cs->in)),
tal_count(cs->in),
NULL, 0,
npub, cs->rk.u.u8) != 0) {
/* FIXME: Report error! */
return io_close(conn);
}
assert(mlen == sizeof(len));
tal_free(cs->in);
/* BOLT #8:
*
* * Read _exactly_ `l+16` bytes from the network buffer, let
* the bytes be known as `c`.
*/
cs->in = tal_arr(cs, u8, (u32)be16_to_cpu(len) + 16);
return io_read(conn, cs->in, tal_count(cs->in), peer_decrypt_body, cs);
}
struct io_plan *peer_read_message(struct io_conn *conn,
struct crypto_state *cs,
struct io_plan *(*next)(struct io_conn *,
struct peer *,
u8 *msg))
{
assert(!cs->in);
/* BOLT #8:
*
* ### Decrypting Messages
*
* In order to decrypt the _next_ message in the network
* stream, the following is done:
*
* * Read _exactly_ `18-bytes` from the network buffer.
*/
cs->in = tal_arr(cs, u8, 18);
cs->next_in = next;
return io_read(conn, cs->in, 18, peer_decrypt_header, cs);
}
static struct io_plan *peer_write_done(struct io_conn *conn,
struct crypto_state *cs)
{
cs->out = tal_free(cs->out);
return cs->next_out(conn, cs->peer);
}
struct io_plan *peer_write_message(struct io_conn *conn,
struct crypto_state *cs,
const u8 *msg,
struct io_plan *(*next)(struct io_conn *,
struct peer *))
{
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
unsigned long long clen, mlen = tal_count(msg);
be16 l;
int ret;
assert(!cs->out);
cs->out = tal_arr(cs, u8, sizeof(l) + 16 + mlen + 16);
cs->next_out = next;
/* BOLT #8:
*
* In order to encrypt a lightning message (`m`), given a
* sending key (`sk`), and a nonce (`sn`), the following is done:
*
*
* * let `l = len(m)`,
* where `len` obtains the length in bytes of the lightning message.
*
* * Serialize `l` into `2-bytes` encoded as a big-endian integer.
*/
l = cpu_to_be16(mlen);
/* BOLT #8:
*
* * Encrypt `l` using `ChaChaPoly-1305`, `sn`, and `sk` to obtain `lc`
* (`18-bytes`)
* * The nonce `sn` is encoded as a 96-bit big-endian number.
* * The nonce `sn` MUST be incremented after this step.
* * A zero-length byte slice is to be passed as the AD
*/
le64_nonce(npub, cs->sn++);
ret = crypto_aead_chacha20poly1305_ietf_encrypt(cs->out, &clen,
(unsigned char *)
memcheck(&l, sizeof(l)),
sizeof(l),
NULL, 0,
NULL, npub,
cs->sk.u.u8);
assert(ret == 0);
assert(clen == sizeof(l) + 16);
/* BOLT #8:
*
* * Finally encrypt the message itself (`m`) using the same
* procedure used to encrypt the length prefix. Let
* encrypted ciphertext be known as `c`.
*
* * The nonce `sn` MUST be incremented after this step.
*/
le64_nonce(npub, cs->sn++);
ret = crypto_aead_chacha20poly1305_ietf_encrypt(cs->out + clen, &clen,
memcheck(msg, mlen),
mlen,
NULL, 0,
NULL, npub,
cs->sk.u.u8);
assert(ret == 0);
assert(clen == mlen + 16);
maybe_rotate_key(&cs->sn, &cs->sk, &cs->s_ck);
/* BOLT #8:
* * Send `lc || c` over the network buffer.
*/
return io_write(conn, cs->out, tal_count(cs->out), peer_write_done, cs);
}
struct crypto_state *crypto_state(struct peer *peer,
const struct sha256 *sk,
const struct sha256 *rk,
const struct sha256 *rck,
const struct sha256 *sck,
u64 rn, u64 sn)
{
struct crypto_state *cs = tal(peer, struct crypto_state);
cs->rn = rn;
cs->sn = sn;
cs->sk = *sk;
cs->rk = *rk;
cs->s_ck = *sck;
cs->r_ck = *rck;
cs->peer = peer;
cs->out = cs->in = NULL;
return cs;
}

32
lightningd/cryptomsg.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef LIGHTNING_LIGHTNINGD_CRYPTOMSG_H
#define LIGHTNING_LIGHTNINGD_CRYPTOMSG_H
#include "config.h"
#include <ccan/short_types/short_types.h>
struct io_conn;
struct peer;
struct sha256;
/* Initializes peer->crypto_state */
struct crypto_state *crypto_state(struct peer *peer,
const struct sha256 *sk,
const struct sha256 *rk,
const struct sha256 *rck,
const struct sha256 *sck,
u64 rn, u64 sn);
/* Get decrypted message */
struct io_plan *peer_read_message(struct io_conn *conn,
struct crypto_state *cs,
struct io_plan *(*next)(struct io_conn *,
struct peer *,
u8 *msg));
/* Sends and frees message */
struct io_plan *peer_write_message(struct io_conn *conn,
struct crypto_state *cs,
const u8 *msg,
struct io_plan *(*next)(struct io_conn *,
struct peer *));
#endif /* LIGHTNING_LIGHTNINGD_CRYPTOMSG_H */