btcd/txscript/sighash.go
Olaoluwa Osuntokun e781b66e2f
txscript: implement BIP 341+342 segwit v1 taproot+tapscript
In this commit, we implement the new BIP 341+342 taproot sighash digest
computation. The digest is similar, but re-orders some fragments and
also starts to commit to the input values of all the transactions in the
SIGHASH_ALL case. A new implicit sighash flag, SIGHASH_DEFAULT has been
added that allows signatures to always be 64-bytes for the common case.

The hashcache has been updated as well to store both the v0 and v1 mid
state hashes. The v0 hashes are a double-sha of the contents, while the
v1 hash is a single sha. As a result, if a transaction spends both v0
and v1 inputs, then we 're able to re-use all the intermediate hashes.

As the sighash computation needs the input values and scripts, we create
an abstraction: the PrevOutFetcher to give the caller flexibility w.r.t
how this is done. We also create a `CannedPrevOutputFetcher` that holds
the information in a map for a single input.

A series of function options are also added to allow re-use of the same
base sig hash calculation for both BIP 341 and 342.
2022-03-15 18:22:43 -07:00

629 lines
21 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Copyright (c) 2015-2019 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"fmt"
"io"
"math"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
)
// SigHashType represents hash type bits at the end of a signature.
type SigHashType uint32
// Hash type bits from the end of a signature.
const (
SigHashDefault SigHashType = 0x00
SigHashOld SigHashType = 0x0
SigHashAll SigHashType = 0x1
SigHashNone SigHashType = 0x2
SigHashSingle SigHashType = 0x3
SigHashAnyOneCanPay SigHashType = 0x80
// sigHashMask defines the number of bits of the hash type which is used
// to identify which outputs are signed.
sigHashMask = 0x1f
)
const (
// blankCodeSepValue is the value of the code separator position in the
// tapscript sighash when no code separator was found in the script.
blankCodeSepValue = math.MaxUint32
)
// shallowCopyTx creates a shallow copy of the transaction for use when
// calculating the signature hash. It is used over the Copy method on the
// transaction itself since that is a deep copy and therefore does more work and
// allocates much more space than needed.
func shallowCopyTx(tx *wire.MsgTx) wire.MsgTx {
// As an additional memory optimization, use contiguous backing arrays
// for the copied inputs and outputs and point the final slice of
// pointers into the contiguous arrays. This avoids a lot of small
// allocations.
txCopy := wire.MsgTx{
Version: tx.Version,
TxIn: make([]*wire.TxIn, len(tx.TxIn)),
TxOut: make([]*wire.TxOut, len(tx.TxOut)),
LockTime: tx.LockTime,
}
txIns := make([]wire.TxIn, len(tx.TxIn))
for i, oldTxIn := range tx.TxIn {
txIns[i] = *oldTxIn
txCopy.TxIn[i] = &txIns[i]
}
txOuts := make([]wire.TxOut, len(tx.TxOut))
for i, oldTxOut := range tx.TxOut {
txOuts[i] = *oldTxOut
txCopy.TxOut[i] = &txOuts[i]
}
return txCopy
}
// CalcSignatureHash will, given a script and hash type for the current script
// engine instance, calculate the signature hash to be used for signing and
// verification.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func CalcSignatureHash(script []byte, hashType SigHashType, tx *wire.MsgTx, idx int) ([]byte, error) {
const scriptVersion = 0
if err := checkScriptParses(scriptVersion, script); err != nil {
return nil, err
}
return calcSignatureHash(script, hashType, tx, idx), nil
}
// calcSignatureHash computes the signature hash for the specified input of the
// target transaction observing the desired signature hash type.
func calcSignatureHash(sigScript []byte, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
// The SigHashSingle signature type signs only the corresponding input
// and output (the output with the same index number as the input).
//
// Since transactions can have more inputs than outputs, this means it
// is improper to use SigHashSingle on input indices that don't have a
// corresponding output.
//
// A bug in the original Satoshi client implementation means specifying
// an index that is out of range results in a signature hash of 1 (as a
// uint256 little endian). The original intent appeared to be to
// indicate failure, but unfortunately, it was never checked and thus is
// treated as the actual signature hash. This buggy behavior is now
// part of the consensus and a hard fork would be required to fix it.
//
// Due to this, care must be taken by software that creates transactions
// which make use of SigHashSingle because it can lead to an extremely
// dangerous situation where the invalid inputs will end up signing a
// hash of 1. This in turn presents an opportunity for attackers to
// cleverly construct transactions which can steal those coins provided
// they can reuse signatures.
if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) {
var hash chainhash.Hash
hash[0] = 0x01
return hash[:]
}
// Remove all instances of OP_CODESEPARATOR from the script.
sigScript = removeOpcodeRaw(sigScript, OP_CODESEPARATOR)
// Make a shallow copy of the transaction, zeroing out the script for
// all inputs that are not currently being processed.
txCopy := shallowCopyTx(tx)
for i := range txCopy.TxIn {
if i == idx {
txCopy.TxIn[idx].SignatureScript = sigScript
} else {
txCopy.TxIn[i].SignatureScript = nil
}
}
switch hashType & sigHashMask {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// All but current output get zeroed out.
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = nil
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// Consensus treats undefined hashtypes like normal SigHashAll
// for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// Nothing special here.
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
}
// The final hash is the double sha256 of both the serialized modified
// transaction and the hash type (encoded as a 4-byte little-endian
// value) appended.
wbuf := bytes.NewBuffer(make([]byte, 0, txCopy.SerializeSizeStripped()+4))
txCopy.SerializeNoWitness(wbuf)
binary.Write(wbuf, binary.LittleEndian, hashType)
return chainhash.DoubleHashB(wbuf.Bytes())
}
// calcWitnessSignatureHashRaw computes the sighash digest of a transaction's
// segwit input using the new, optimized digest calculation algorithm defined
// in BIP0143: https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki.
// This function makes use of pre-calculated sighash fragments stored within
// the passed HashCache to eliminate duplicate hashing computations when
// calculating the final digest, reducing the complexity from O(N^2) to O(N).
// Additionally, signatures now cover the input value of the referenced unspent
// output. This allows offline, or hardware wallets to compute the exact amount
// being spent, in addition to the final transaction fee. In the case the
// wallet if fed an invalid input amount, the real sighash will differ causing
// the produced signature to be invalid.
func calcWitnessSignatureHashRaw(subScript []byte, sigHashes *TxSigHashes,
hashType SigHashType, tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
// As a sanity check, ensure the passed input index for the transaction
// is valid.
//
// TODO(roasbeef): check needs to be lifted elsewhere?
if idx > len(tx.TxIn)-1 {
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
}
// We'll utilize this buffer throughout to incrementally calculate
// the signature hash for this transaction.
var sigHash bytes.Buffer
// First write out, then encode the transaction's version number.
var bVersion [4]byte
binary.LittleEndian.PutUint32(bVersion[:], uint32(tx.Version))
sigHash.Write(bVersion[:])
// Next write out the possibly pre-calculated hashes for the sequence
// numbers of all inputs, and the hashes of the previous outs for all
// outputs.
var zeroHash chainhash.Hash
// If anyone can pay isn't active, then we can use the cached
// hashPrevOuts, otherwise we just write zeroes for the prev outs.
if hashType&SigHashAnyOneCanPay == 0 {
sigHash.Write(sigHashes.HashPrevOutsV0[:])
} else {
sigHash.Write(zeroHash[:])
}
// If the sighash isn't anyone can pay, single, or none, the use the
// cached hash sequences, otherwise write all zeroes for the
// hashSequence.
if hashType&SigHashAnyOneCanPay == 0 &&
hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashSequenceV0[:])
} else {
sigHash.Write(zeroHash[:])
}
txIn := tx.TxIn[idx]
// Next, write the outpoint being spent.
sigHash.Write(txIn.PreviousOutPoint.Hash[:])
var bIndex [4]byte
binary.LittleEndian.PutUint32(bIndex[:], txIn.PreviousOutPoint.Index)
sigHash.Write(bIndex[:])
if isWitnessPubKeyHashScript(subScript) {
// The script code for a p2wkh is a length prefix varint for
// the next 25 bytes, followed by a re-creation of the original
// p2pkh pk script.
sigHash.Write([]byte{0x19})
sigHash.Write([]byte{OP_DUP})
sigHash.Write([]byte{OP_HASH160})
sigHash.Write([]byte{OP_DATA_20})
sigHash.Write(extractWitnessPubKeyHash(subScript))
sigHash.Write([]byte{OP_EQUALVERIFY})
sigHash.Write([]byte{OP_CHECKSIG})
} else {
// For p2wsh outputs, and future outputs, the script code is
// the original script, with all code separators removed,
// serialized with a var int length prefix.
wire.WriteVarBytes(&sigHash, 0, subScript)
}
// Next, add the input amount, and sequence number of the input being
// signed.
var bAmount [8]byte
binary.LittleEndian.PutUint64(bAmount[:], uint64(amt))
sigHash.Write(bAmount[:])
var bSequence [4]byte
binary.LittleEndian.PutUint32(bSequence[:], txIn.Sequence)
sigHash.Write(bSequence[:])
// If the current signature mode isn't single, or none, then we can
// re-use the pre-generated hashoutputs sighash fragment. Otherwise,
// we'll serialize and add only the target output index to the signature
// pre-image.
if hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashOutputsV0[:])
} else if hashType&sigHashMask == SigHashSingle && idx < len(tx.TxOut) {
var b bytes.Buffer
wire.WriteTxOut(&b, 0, 0, tx.TxOut[idx])
sigHash.Write(chainhash.DoubleHashB(b.Bytes()))
} else {
sigHash.Write(zeroHash[:])
}
// Finally, write out the transaction's locktime, and the sig hash
// type.
var bLockTime [4]byte
binary.LittleEndian.PutUint32(bLockTime[:], tx.LockTime)
sigHash.Write(bLockTime[:])
var bHashType [4]byte
binary.LittleEndian.PutUint32(bHashType[:], uint32(hashType))
sigHash.Write(bHashType[:])
return chainhash.DoubleHashB(sigHash.Bytes()), nil
}
// CalcWitnessSigHash computes the sighash digest for the specified input of
// the target transaction observing the desired sig hash type.
func CalcWitnessSigHash(script []byte, sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
const scriptVersion = 0
if err := checkScriptParses(scriptVersion, script); err != nil {
return nil, err
}
return calcWitnessSignatureHashRaw(script, sigHashes, hType, tx, idx, amt)
}
// sigHashExtFlag represents the sig hash extension flag as defined in BIP 341.
// Extensions to the base sighash algorithm will be appended to the base
// sighash digest.
type sigHashExtFlag uint8
const (
// baseSigHashExtFlag is the base extension flag. This adds no changes
// to the sighash digest message. This is used for segwit v1 spends,
// a.k.a the tapscript keyspend path.
baseSigHashExtFlag sigHashExtFlag = 0
// tapscriptSighashExtFlag is the extension flag defined by tapscript
// base leaf version spend define din BIP 342. This augments the base
// sighash by including the tapscript leaf hash, the key version, and
// the code separator position.
tapscriptSighashExtFlag sigHashExtFlag = 1
)
// taprootSigHashOptions houses a set of functional options that may optionally
// modify how the taproot/script sighash digest algorithm is implemented.
type taprootSigHashOptions struct {
// extFlag denotes the current message digest extension being used. For
// top-level script spends use a value of zero, while each tapscript
// version can define its own values as well.
extFlag sigHashExtFlag
// annexHash is the sha256 hash of the annex with a compact size length
// prefix: sha256(sizeOf(annex) || annex).
annexHash []byte
// tapLeafHash is the hash of the tapscript leaf as defined in BIP 341.
// This should be h_tapleaf(version || compactSizeOf(script) || script).
tapLeafHash []byte
// keyVersion is the key version as defined in BIP 341. This is always
// 0x00 for all currently defined leaf versions.
keyVersion byte
// codeSepPos is the op code position of the last code separator. This
// is used for the BIP 342 sighash message extension.
codeSepPos uint32
}
// writeDigestExtensions writes out the sighah mesage extensiosn defined by the
// current active sigHashExtFlags.
func (t *taprootSigHashOptions) writeDigestExtensions(w io.Writer) error {
switch t.extFlag {
// The base extension, used for tapscript keypath spends doesn't modify
// the digest at all.
case baseSigHashExtFlag:
return nil
// The tapscript base leaf version extension adds the leaf hash, key
// version, and code separator position to the final digest.
case tapscriptSighashExtFlag:
if _, err := w.Write(t.tapLeafHash); err != nil {
return err
}
if _, err := w.Write([]byte{t.keyVersion}); err != nil {
return err
}
err := binary.Write(w, binary.LittleEndian, t.codeSepPos)
if err != nil {
return err
}
}
return nil
}
// defaultTaprootSighashOptions returns the set of default sighash options for
// taproot execution.
func defaultTaprootSighashOptions() *taprootSigHashOptions {
return &taprootSigHashOptions{}
}
// TaprootSigHashOption defines a set of functional param options that can be
// used to modify the base sighash message with optional extensions.
type TaprootSigHashOption func(*taprootSigHashOptions)
// WithAnnex is a functional option that allows the caller to specify the
// existence of an annex in the final witness stack for the taproot/tapscript
// spends.
func WithAnnex(annex []byte) TaprootSigHashOption {
return func(o *taprootSigHashOptions) {
// It's just a bytes.Buffer which never returns an error on
// write.
var b bytes.Buffer
_ = wire.WriteVarBytes(&b, 0, annex)
o.annexHash = chainhash.HashB(b.Bytes())
}
}
// WithBaseTapscriptVersion is a functional option that specifies that the
// sighash digest should include the extra information included as part of the
// base tapscript version.
func WithBaseTapscriptVersion(codeSepPos uint32,
tapLeafHash []byte) TaprootSigHashOption {
return func(o *taprootSigHashOptions) {
o.extFlag = tapscriptSighashExtFlag
o.tapLeafHash = tapLeafHash
o.keyVersion = 0
o.codeSepPos = codeSepPos
}
}
// isValidTaprootSigHash returns true if the passed sighash is a valid taproot
// sighash.
func isValidTaprootSigHash(hashType SigHashType) bool {
switch hashType {
case SigHashDefault, SigHashAll, SigHashNone, SigHashSingle:
fallthrough
case 0x81, 0x82, 0x83:
return true
default:
return false
}
}
// calcTaprootSignatureHashRaw computes the sighash as specified in BIP 143.
// If an invalid sighash type is passed in, an error is returned.
func calcTaprootSignatureHashRaw(sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int,
prevOutFetcher PrevOutputFetcher,
sigHashOpts ...TaprootSigHashOption) ([]byte, error) {
opts := defaultTaprootSighashOptions()
for _, sigHashOpt := range sigHashOpts {
sigHashOpt(opts)
}
// If a valid sighash type isn't passed in, then we'll exit early.
if !isValidTaprootSigHash(hType) {
// TODO(roasbeef): use actual errr here
return nil, fmt.Errorf("invalid taproot sighash type: %v", hType)
}
// As a sanity check, ensure the passed input index for the transaction
// is valid.
if idx > len(tx.TxIn)-1 {
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
}
// We'll utilize this buffer throughout to incrementally calculate
// the signature hash for this transaction.
var sigMsg bytes.Buffer
// The final sighash always has a value of 0x00 prepended to it, which
// is called the sighash epoch.
sigMsg.WriteByte(0x00)
// First, we write the hash type encoded as a single byte.
if err := sigMsg.WriteByte(byte(hType)); err != nil {
return nil, err
}
// Next we'll write out the transaction specific data which binds the
// outer context of the sighash.
err := binary.Write(&sigMsg, binary.LittleEndian, tx.Version)
if err != nil {
return nil, err
}
err = binary.Write(&sigMsg, binary.LittleEndian, tx.LockTime)
if err != nil {
return nil, err
}
// If sighash isn't anyone can pay, then we'll include all the
// pre-computed midstate digests in the sighash.
if hType&SigHashAnyOneCanPay != SigHashAnyOneCanPay {
sigMsg.Write(sigHashes.HashPrevOutsV1[:])
sigMsg.Write(sigHashes.HashInputAmountsV1[:])
sigMsg.Write(sigHashes.HashInputScriptsV1[:])
sigMsg.Write(sigHashes.HashSequenceV1[:])
}
// If this is sighash all, or its taproot alias (sighash default),
// then we'll also include the pre-computed digest of all the outputs
// of the transaction.
if hType&SigHashSingle != SigHashSingle &&
hType&SigHashSingle != SigHashNone {
sigMsg.Write(sigHashes.HashOutputsV1[:])
}
// Next, we'll write out the relevant information for this specific
// input.
//
// The spend type is computed as the (ext_flag*2) + annex_present. We
// use this to bind the extension flag (that BIP 342 uses), as well as
// the annex if its present.
input := tx.TxIn[idx]
witnessHasAnnex := opts.annexHash != nil
spendType := byte(opts.extFlag) * 2
if witnessHasAnnex {
spendType += 1
}
if err := sigMsg.WriteByte(spendType); err != nil {
return nil, err
}
// If anyone can pay is active, then we'll write out just the specific
// information about this input, given we skipped writing all the
// information of all the inputs above.
if hType&SigHashAnyOneCanPay == SigHashAnyOneCanPay {
// We'll start out with writing this input specific information by
// first writing the entire previous output.
err = wire.WriteOutPoint(&sigMsg, 0, 0, &input.PreviousOutPoint)
if err != nil {
return nil, err
}
// Next, we'll write out the previous output (amt+script) being
// spent itself.
prevOut := prevOutFetcher.FetchPrevOutput(input.PreviousOutPoint)
if err := wire.WriteTxOut(&sigMsg, 0, 0, prevOut); err != nil {
return nil, err
}
// Finally, we'll write out the input sequence itself.
err = binary.Write(&sigMsg, binary.LittleEndian, input.Sequence)
if err != nil {
return nil, err
}
} else {
err := binary.Write(&sigMsg, binary.LittleEndian, uint32(idx))
if err != nil {
return nil, err
}
}
// Now that we have the input specific information written, we'll
// include the anex, if we have it.
if witnessHasAnnex {
sigMsg.Write(opts.annexHash)
}
// Finally, if this is sighash single, then we'll write out the
// information for this given output.
if hType&sigHashMask == SigHashSingle {
// If this output doesn't exist, then we'll return with an error
// here as this is an invalid sighash type for this input.
if idx >= len(tx.TxOut) {
// TODO(roasbeef): real error here
return nil, fmt.Errorf("invalid sighash type for input")
}
// Now that we know this is a valid sighash input combination,
// we'll write out the information specific to this input.
// We'll write the wire serialization of the output and compute
// the sha256 in a single step.
shaWriter := sha256.New()
txOut := tx.TxOut[idx]
if err := wire.WriteTxOut(shaWriter, 0, 0, txOut); err != nil {
return nil, err
}
// With the digest obtained, we'll write this out into our
// signature message.
if _, err := sigMsg.Write(shaWriter.Sum(nil)); err != nil {
return nil, err
}
}
// Now that we've written out all the base information, we'll write any
// message extensions (if they exist).
if err := opts.writeDigestExtensions(&sigMsg); err != nil {
return nil, err
}
// The final sighash is computed as: hash_TagSigHash(0x00 || sigMsg).
// We wrote the 0x00 above so we don't need to append here and incur
// extra allocations.
sigHash := chainhash.TaggedHash(chainhash.TagTapSighash, sigMsg.Bytes())
return sigHash[:], nil
}
// CalcTaprootSignatureHash computes the sighash digest of a transaction's
// taproot-spending input using the new sighash digest algorithm described in
// BIP 341. As the new digest algoriths may require the digest to commit to the
// entire prev output, a PrevOutputFetcher argument is required to obtain the
// needed information. The TxSigHashes pre-computed sighash midstate MUST be
// specified.
func CalcTaprootSignatureHash(sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int,
prevOutFetcher PrevOutputFetcher) ([]byte, error) {
return calcTaprootSignatureHashRaw(
sigHashes, hType, tx, idx, prevOutFetcher,
)
}
// CalcTaprootSignatureHash is similar to CalcTaprootSignatureHash but for
// _tapscript_ spends instead. A proper TapLeaf instance (the script leaf being
// signed) must be passed in. The functional options can be used to specify an
// annex if the signature was bound to that context.
//
// NOTE: This function is able to compute the sighash of scripts that contain a
// code separator if the caller passes in an instance of
// WithBaseTapscriptVersion with the valid position.
func CalcTapscriptSignaturehash(sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int, prevOutFetcher PrevOutputFetcher,
tapLeaf TapLeaf,
sigHashOpts ...TaprootSigHashOption) ([]byte, error) {
tapLeafHash := tapLeaf.TapHash()
var opts []TaprootSigHashOption
opts = append(
opts, WithBaseTapscriptVersion(blankCodeSepValue, tapLeafHash[:]),
)
opts = append(opts, sigHashOpts...)
return calcTaprootSignatureHashRaw(
sigHashes, hType, tx, idx, prevOutFetcher, opts...,
)
}