txscript: implement BIP 341+342 segwit v1 taproot+tapscript

In this commit, we implement the new BIP 341+342 taproot sighash digest
computation. The digest is similar, but re-orders some fragments and
also starts to commit to the input values of all the transactions in the
SIGHASH_ALL case. A new implicit sighash flag, SIGHASH_DEFAULT has been
added that allows signatures to always be 64-bytes for the common case.

The hashcache has been updated as well to store both the v0 and v1 mid
state hashes. The v0 hashes are a double-sha of the contents, while the
v1 hash is a single sha. As a result, if a transaction spends both v0
and v1 inputs, then we 're able to re-use all the intermediate hashes.

As the sighash computation needs the input values and scripts, we create
an abstraction: the PrevOutFetcher to give the caller flexibility w.r.t
how this is done. We also create a `CannedPrevOutputFetcher` that holds
the information in a map for a single input.

A series of function options are also added to allow re-use of the same
base sig hash calculation for both BIP 341 and 342.
This commit is contained in:
Olaoluwa Osuntokun 2022-01-06 17:15:57 -08:00
parent 6ecc72e5e6
commit e781b66e2f
No known key found for this signature in database
GPG Key ID: 3BBD59E99B280306
16 changed files with 731 additions and 104 deletions

View File

@ -10,9 +10,9 @@ import (
"runtime"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcd/btcutil"
)
// txValidateItem holds a transaction along with which input to validate.
@ -74,9 +74,11 @@ out:
witness := txIn.Witness
pkScript := utxo.PkScript()
inputAmount := utxo.Amount()
vm, err := txscript.NewEngine(pkScript, txVI.tx.MsgTx(),
txVI.txInIndex, v.flags, v.sigCache, txVI.sigHashes,
inputAmount)
vm, err := txscript.NewEngine(
pkScript, txVI.tx.MsgTx(), txVI.txInIndex,
v.flags, v.sigCache, txVI.sigHashes,
inputAmount, v.utxoView,
)
if err != nil {
str := fmt.Sprintf("failed to parse input "+
"%s:%d which references output %v - "+
@ -201,7 +203,7 @@ func ValidateTransactionScripts(tx *btcutil.Tx, utxoView *UtxoViewpoint,
// amongst all worker validation goroutines.
if segwitActive && tx.MsgTx().HasWitness() &&
!hashCache.ContainsHashes(tx.Hash()) {
hashCache.AddSigHashes(tx.MsgTx())
hashCache.AddSigHashes(tx.MsgTx(), utxoView)
}
var cachedHashes *txscript.TxSigHashes
@ -266,7 +268,7 @@ func checkBlockScripts(block *btcutil.Block, utxoView *UtxoViewpoint,
if segwitActive && tx.HasWitness() && hashCache != nil &&
!hashCache.ContainsHashes(hash) {
hashCache.AddSigHashes(tx.MsgTx())
hashCache.AddSigHashes(tx.MsgTx(), utxoView)
}
var cachedHashes *txscript.TxSigHashes
@ -274,7 +276,9 @@ func checkBlockScripts(block *btcutil.Block, utxoView *UtxoViewpoint,
if hashCache != nil {
cachedHashes, _ = hashCache.GetSigHashes(hash)
} else {
cachedHashes = txscript.NewTxSigHashes(tx.MsgTx())
cachedHashes = txscript.NewTxSigHashes(
tx.MsgTx(), utxoView,
)
}
}

View File

@ -7,11 +7,11 @@ package blockchain
import (
"fmt"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcd/btcutil"
)
// txoFlags is a bitmask defining additional information and state for a
@ -159,6 +159,23 @@ func (view *UtxoViewpoint) LookupEntry(outpoint wire.OutPoint) *UtxoEntry {
return view.entries[outpoint]
}
// FetchPrevOutput fetches the previous output referenced by the passed
// outpoint. This is identical to the LookupEntry method, but it returns a
// wire.TxOut instead.
//
// NOTE: This is an implementation of the txscript.PrevOutputFetcher interface.
func (view *UtxoViewpoint) FetchPrevOutput(op wire.OutPoint) *wire.TxOut {
prevOut := view.entries[op]
if prevOut == nil {
return nil
}
return &wire.TxOut{
Value: prevOut.amount,
PkScript: prevOut.PkScript(),
}
}
// addTxOut adds the specified output to the view if it is not provably
// unspendable. When the view already has an entry for the output, it will be
// marked unspent. All fields will be updated for existing entries since it's

View File

@ -27,12 +27,17 @@ var (
// TagBIP0340Nonce is the BIP-0340 tag for nonces.
TagBIP0340Nonce = []byte("BIP0340/nonce")
// TagTapSighash is the tag used by BIP 341 to generate the sighash
// flags.
TagTapSighash = []byte("TapSighash")
// precomputedTags is a map containing the SHA-256 hash of the BIP-0340
// tags.
precomputedTags = map[string]Hash{
string(TagBIP0340Challenge): sha256.Sum256(TagBIP0340Challenge),
string(TagBIP0340Aux): sha256.Sum256(TagBIP0340Aux),
string(TagBIP0340Nonce): sha256.Sum256(TagBIP0340Nonce),
string(TagTapSighash): sha256.Sum256(TagTapSighash),
}
)

View File

@ -55,7 +55,8 @@ func BenchmarkCalcSigHash(b *testing.B) {
// BenchmarkCalcWitnessSigHash benchmarks how long it takes to calculate the
// witness signature hashes for all inputs of a transaction with many inputs.
func BenchmarkCalcWitnessSigHash(b *testing.B) {
sigHashes := NewTxSigHashes(&manyInputsBenchTx)
prevOutFetcher := NewCannedPrevOutputFetcher(prevOutScript, 5)
sigHashes := NewTxSigHashes(&manyInputsBenchTx, prevOutFetcher)
b.ResetTimer()
b.ReportAllocs()

View File

@ -145,13 +145,14 @@ type Engine struct {
// since transaction scripts are often executed more than once from various
// contexts (e.g. new block templates, when transactions are first seen
// prior to being mined, part of full block verification, etc).
flags ScriptFlags
tx wire.MsgTx
txIdx int
version uint16
bip16 bool
sigCache *SigCache
hashCache *TxSigHashes
flags ScriptFlags
tx wire.MsgTx
txIdx int
version uint16
bip16 bool
sigCache *SigCache
hashCache *TxSigHashes
prevOutFetcher PrevOutputFetcher
// The following fields handle keeping track of the current execution state
// of the engine.
@ -1117,7 +1118,9 @@ func (vm *Engine) SetAltStack(data [][]byte) {
// transaction, and input index. The flags modify the behavior of the script
// engine according to the description provided by each flag.
func NewEngine(scriptPubKey []byte, tx *wire.MsgTx, txIdx int, flags ScriptFlags,
sigCache *SigCache, hashCache *TxSigHashes, inputAmount int64) (*Engine, error) {
sigCache *SigCache, hashCache *TxSigHashes, inputAmount int64,
prevOuts PrevOutputFetcher) (*Engine, error) {
const scriptVersion = 0
// The provided transaction input index must refer to a valid input.
@ -1147,8 +1150,13 @@ func NewEngine(scriptPubKey []byte, tx *wire.MsgTx, txIdx int, flags ScriptFlags
// it possible to have a situation where P2SH would not be a soft fork
// when it should be. The same goes for segwit which will pull in
// additional scripts for execution from the witness stack.
vm := Engine{flags: flags, sigCache: sigCache, hashCache: hashCache,
inputAmount: inputAmount}
vm := Engine{
flags: flags,
sigCache: sigCache,
hashCache: hashCache,
inputAmount: inputAmount,
prevOutFetcher: prevOuts,
}
if vm.hasFlag(ScriptVerifyCleanStack) && (!vm.hasFlag(ScriptBip16) &&
!vm.hasFlag(ScriptVerifyWitness)) {
return nil, scriptError(ErrInvalidFlags,

View File

@ -55,7 +55,7 @@ func TestBadPC(t *testing.T) {
pkScript := mustParseShortForm("NOP")
for _, test := range tests {
vm, err := NewEngine(pkScript, tx, 0, 0, nil, nil, -1)
vm, err := NewEngine(pkScript, tx, 0, 0, nil, nil, -1, nil)
if err != nil {
t.Errorf("Failed to create script: %v", err)
}
@ -112,7 +112,7 @@ func TestCheckErrorCondition(t *testing.T) {
pkScript := mustParseShortForm("NOP NOP NOP NOP NOP NOP NOP NOP NOP" +
" NOP TRUE")
vm, err := NewEngine(pkScript, tx, 0, 0, nil, nil, 0)
vm, err := NewEngine(pkScript, tx, 0, 0, nil, nil, 0, nil)
if err != nil {
t.Errorf("failed to create script: %v", err)
}
@ -188,7 +188,7 @@ func TestInvalidFlagCombinations(t *testing.T) {
pkScript := []byte{OP_NOP}
for i, test := range tests {
_, err := NewEngine(pkScript, tx, 0, test, nil, nil, -1)
_, err := NewEngine(pkScript, tx, 0, test, nil, nil, -1, nil)
if !IsErrorCode(err, ErrInvalidFlags) {
t.Fatalf("TestInvalidFlagCombinations #%d unexpected "+
"error: %v", i, err)

View File

@ -10,11 +10,11 @@ import (
"fmt"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcd/btcutil"
)
// This example demonstrates creating a script which pays to a bitcoin address.
@ -167,7 +167,7 @@ func ExampleSignTxOutput() {
txscript.ScriptStrictMultiSig |
txscript.ScriptDiscourageUpgradableNops
vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0,
flags, nil, nil, -1)
flags, nil, nil, -1, nil)
if err != nil {
fmt.Println(err)
return

View File

@ -7,6 +7,7 @@ package txscript
import (
"bytes"
"encoding/binary"
"math"
"sync"
"github.com/btcsuite/btcd/chaincfg/chainhash"
@ -67,24 +68,230 @@ func calcHashOutputs(tx *wire.MsgTx) chainhash.Hash {
return chainhash.HashH(b.Bytes())
}
// PrevOutputFetcher is an interface used to supply the sighash cache with the
// previous output information needed to calculate the pre-computed sighash
// midstate for taproot transactions.
type PrevOutputFetcher interface {
// FetchPrevOutput attempts to fetch the previous output referenced by
// the passed outpoint. A nil value will be returned if the passed
// outpoint doesn't exist.
FetchPrevOutput(wire.OutPoint) *wire.TxOut
}
// CannedPrevOutputFetcher is an implementation of PrevOutputFetcher that only
// is able to return information for a single previous output.
type CannedPrevOutputFetcher struct {
pkScript []byte
amt int64
}
// NewCannedPrevOutputFetcher returns an instance of a CannedPrevOutputFetcher
// that can only return the TxOut defined by the passed script and amount.
func NewCannedPrevOutputFetcher(script []byte, amt int64) *CannedPrevOutputFetcher {
return &CannedPrevOutputFetcher{
pkScript: script,
amt: amt,
}
}
// FetchPrevOutput attempts to fetch the previous output referenced by the
// passed outpoint.
//
// NOTE: This is a part of the PrevOutputFetcher interface.
func (c *CannedPrevOutputFetcher) FetchPrevOutput(wire.OutPoint) *wire.TxOut {
return &wire.TxOut{
PkScript: c.pkScript,
Value: c.amt,
}
}
// A compile-time assertion to ensure that CannedPrevOutputFetcher matches the
// PrevOutputFetcher interface.
var _ PrevOutputFetcher = (*CannedPrevOutputFetcher)(nil)
// MultiPrevOutFetcher is a custom implementation of the PrevOutputFetcher
// backed by a key-value map of prevouts to outputs.
type MultiPrevOutFetcher struct {
prevOuts map[wire.OutPoint]*wire.TxOut
}
// NewMultiPrevOutFetcher returns an instance of a PrevOutputFetcher that's
// backed by an optional map which is used as an input source. The
func NewMultiPrevOutFetcher(prevOuts map[wire.OutPoint]*wire.TxOut) *MultiPrevOutFetcher {
if prevOuts == nil {
prevOuts = make(map[wire.OutPoint]*wire.TxOut)
}
return &MultiPrevOutFetcher{
prevOuts: prevOuts,
}
}
// FetchPrevOutput attempts to fetch the previous output referenced by the
// passed outpoint.
//
// NOTE: This is a part of the CannedPrevOutputFetcher interface.
func (m *MultiPrevOutFetcher) FetchPrevOutput(op wire.OutPoint) *wire.TxOut {
return m.prevOuts[op]
}
// AddPrevOut adds a new prev out, tx out pair to the backing map.
func (m *MultiPrevOutFetcher) AddPrevOut(op wire.OutPoint, txOut *wire.TxOut) {
m.prevOuts[op] = txOut
}
// Merge merges two instances of a MultiPrevOutFetcher into a single source.
func (m *MultiPrevOutFetcher) Merge(other *MultiPrevOutFetcher) {
for k, v := range other.prevOuts {
m.prevOuts[k] = v
}
}
// A compile-time assertion to ensure that MultiPrevOutFetcher matches the
// PrevOutputFetcher interface.
var _ PrevOutputFetcher = (*MultiPrevOutFetcher)(nil)
// calcHashInputAmounts computes a hash digest of the input amounts of all
// inputs referenced in the passed transaction. This hash pre computation is only
// used for validating taproot inputs.
func calcHashInputAmounts(tx *wire.MsgTx, inputFetcher PrevOutputFetcher) chainhash.Hash {
var b bytes.Buffer
for _, txIn := range tx.TxIn {
prevOut := inputFetcher.FetchPrevOutput(txIn.PreviousOutPoint)
_ = binary.Write(&b, binary.LittleEndian, prevOut.Value)
}
return chainhash.HashH(b.Bytes())
}
// calcHashInputAmts computes the hash digest of all the previous input scripts
// referenced by the passed transaction. This hash pre computation is only used
// for validating taproot inputs.
func calcHashInputScripts(tx *wire.MsgTx, inputFetcher PrevOutputFetcher) chainhash.Hash {
var b bytes.Buffer
for _, txIn := range tx.TxIn {
prevOut := inputFetcher.FetchPrevOutput(txIn.PreviousOutPoint)
_ = wire.WriteVarBytes(&b, 0, prevOut.PkScript)
}
return chainhash.HashH(b.Bytes())
}
// SegwitSigHashMidstate is the sighash midstate used in the base segwit
// sighash calculation as defined in BIP 143.
type SegwitSigHashMidstate struct {
HashPrevOutsV0 chainhash.Hash
HashSequenceV0 chainhash.Hash
HashOutputsV0 chainhash.Hash
}
// TaprootSigHashMidState is the sighash midstate used to compute taproot and
// tapscript signatures as defined in BIP 341.
type TaprootSigHashMidState struct {
HashPrevOutsV1 chainhash.Hash
HashSequenceV1 chainhash.Hash
HashOutputsV1 chainhash.Hash
HashInputScriptsV1 chainhash.Hash
HashInputAmountsV1 chainhash.Hash
}
// TxSigHashes houses the partial set of sighashes introduced within BIP0143.
// This partial set of sighashes may be re-used within each input across a
// transaction when validating all inputs. As a result, validation complexity
// for SigHashAll can be reduced by a polynomial factor.
type TxSigHashes struct {
HashPrevOuts chainhash.Hash
HashSequence chainhash.Hash
HashOutputs chainhash.Hash
SegwitSigHashMidstate
TaprootSigHashMidState
}
// NewTxSigHashes computes, and returns the cached sighashes of the given
// transaction.
func NewTxSigHashes(tx *wire.MsgTx) *TxSigHashes {
return &TxSigHashes{
HashPrevOuts: calcHashPrevOuts(tx),
HashSequence: calcHashSequence(tx),
HashOutputs: calcHashOutputs(tx),
func NewTxSigHashes(tx *wire.MsgTx,
inputFetcher PrevOutputFetcher) *TxSigHashes {
var (
sigHashes TxSigHashes
zeroHash chainhash.Hash
)
// Base segwit (witness version v0), and taproot (witness version v1)
// differ in how the set of pre-computed cached sighash midstate is
// computed. For taproot, the prevouts, sequence, and outputs are
// computed as normal, but a single sha256 hash invocation is used. In
// addition, the hashes of all the previous input amounts and scripts
// are included as well.
//
// Based on the above distinction, we'll run through all the referenced
// inputs to determine what we need to compute.
var hasV0Inputs, hasV1Inputs bool
for _, txIn := range tx.TxIn {
// If this is a coinbase input, then we know that we only need
// the v0 midstate (though it won't be used) in this instance.
outpoint := txIn.PreviousOutPoint
if outpoint.Index == math.MaxUint32 && outpoint.Hash == zeroHash {
hasV0Inputs = true
continue
}
prevOut := inputFetcher.FetchPrevOutput(outpoint)
// If this is spending a script that looks like a taproot output,
// then we'll need to pre-compute the extra taproot data.
if IsPayToTaproot(prevOut.PkScript) {
hasV1Inputs = true
} else {
// Otherwise, we'll assume we need the v0 sighash midstate.
hasV0Inputs = true
}
// If the transaction has _both_ v0 and v1 inputs, then we can stop
// here.
if hasV0Inputs && hasV1Inputs {
break
}
}
// Now that we know which cached midstate we need to calculate, we can
// go ahead and do so.
//
// First, we can calculate the information that both segwit v0 and v1
// need: the prevout, sequence and output hashes. For v1 the only
// difference is that this is a single instead of a double hash.
//
// Both v0 and v1 share this base data computed using a sha256 single
// hash.
sigHashes.HashPrevOutsV1 = calcHashPrevOuts(tx)
sigHashes.HashSequenceV1 = calcHashSequence(tx)
sigHashes.HashOutputsV1 = calcHashOutputs(tx)
// The v0 data is the same as the v1 (newer data) but it uses a double
// hash instead.
if hasV0Inputs {
sigHashes.HashPrevOutsV0 = chainhash.HashH(
sigHashes.HashPrevOutsV1[:],
)
sigHashes.HashSequenceV0 = chainhash.HashH(
sigHashes.HashSequenceV1[:],
)
sigHashes.HashOutputsV0 = chainhash.HashH(
sigHashes.HashOutputsV1[:],
)
}
// Finally, we'll compute the taproot specific data if needed.
if hasV1Inputs {
sigHashes.HashInputAmountsV1 = calcHashInputAmounts(
tx, inputFetcher,
)
sigHashes.HashInputScriptsV1 = calcHashInputScripts(
tx, inputFetcher,
)
}
return &sigHashes
}
// HashCache houses a set of partial sighashes keyed by txid. The set of partial
@ -108,9 +315,11 @@ func NewHashCache(maxSize uint) *HashCache {
// AddSigHashes computes, then adds the partial sighashes for the passed
// transaction.
func (h *HashCache) AddSigHashes(tx *wire.MsgTx) {
func (h *HashCache) AddSigHashes(tx *wire.MsgTx,
inputFetcher PrevOutputFetcher) {
h.Lock()
h.sigHashes[tx.TxHash()] = NewTxSigHashes(tx)
h.sigHashes[tx.TxHash()] = NewTxSigHashes(tx, inputFetcher)
h.Unlock()
}

View File

@ -18,10 +18,12 @@ func init() {
}
// genTestTx creates a random transaction for uses within test cases.
func genTestTx() (*wire.MsgTx, error) {
func genTestTx() (*wire.MsgTx, *MultiPrevOutFetcher, error) {
tx := wire.NewMsgTx(2)
tx.Version = rand.Int31()
prevOuts := NewMultiPrevOutFetcher(nil)
numTxins := 1 + rand.Intn(11)
for i := 0; i < numTxins; i++ {
randTxIn := wire.TxIn{
@ -32,10 +34,14 @@ func genTestTx() (*wire.MsgTx, error) {
}
_, err := rand.Read(randTxIn.PreviousOutPoint.Hash[:])
if err != nil {
return nil, err
return nil, nil, err
}
tx.TxIn = append(tx.TxIn, &randTxIn)
prevOuts.AddPrevOut(
randTxIn.PreviousOutPoint, &wire.TxOut{},
)
}
numTxouts := 1 + rand.Intn(11)
@ -45,12 +51,12 @@ func genTestTx() (*wire.MsgTx, error) {
PkScript: make([]byte, rand.Intn(30)),
}
if _, err := rand.Read(randTxOut.PkScript); err != nil {
return nil, err
return nil, nil, err
}
tx.TxOut = append(tx.TxOut, &randTxOut)
}
return tx, nil
return tx, prevOuts, nil
}
// TestHashCacheAddContainsHashes tests that after items have been added to the
@ -62,23 +68,29 @@ func TestHashCacheAddContainsHashes(t *testing.T) {
cache := NewHashCache(10)
var err error
var (
err error
randPrevOuts *MultiPrevOutFetcher
)
prevOuts := NewMultiPrevOutFetcher(nil)
// First, we'll generate 10 random transactions for use within our
// tests.
const numTxns = 10
txns := make([]*wire.MsgTx, numTxns)
for i := 0; i < numTxns; i++ {
txns[i], err = genTestTx()
txns[i], randPrevOuts, err = genTestTx()
if err != nil {
t.Fatalf("unable to generate test tx: %v", err)
}
prevOuts.Merge(randPrevOuts)
}
// With the transactions generated, we'll add each of them to the hash
// cache.
for _, tx := range txns {
cache.AddSigHashes(tx)
cache.AddSigHashes(tx, prevOuts)
}
// Next, we'll ensure that each of the transactions inserted into the
@ -91,7 +103,7 @@ func TestHashCacheAddContainsHashes(t *testing.T) {
}
}
randTx, err := genTestTx()
randTx, _, err := genTestTx()
if err != nil {
t.Fatalf("unable to generate tx: %v", err)
}
@ -115,14 +127,14 @@ func TestHashCacheAddGet(t *testing.T) {
// To start, we'll generate a random transaction and compute the set of
// sighashes for the transaction.
randTx, err := genTestTx()
randTx, prevOuts, err := genTestTx()
if err != nil {
t.Fatalf("unable to generate tx: %v", err)
}
sigHashes := NewTxSigHashes(randTx)
sigHashes := NewTxSigHashes(randTx, prevOuts)
// Next, add the transaction to the hash cache.
cache.AddSigHashes(randTx)
cache.AddSigHashes(randTx, prevOuts)
// The transaction inserted into the cache above should be found.
txid := randTx.TxHash()
@ -146,19 +158,25 @@ func TestHashCachePurge(t *testing.T) {
cache := NewHashCache(10)
var err error
var (
err error
randPrevOuts *MultiPrevOutFetcher
)
prevOuts := NewMultiPrevOutFetcher(nil)
// First we'll start by inserting numTxns transactions into the hash cache.
const numTxns = 10
txns := make([]*wire.MsgTx, numTxns)
for i := 0; i < numTxns; i++ {
txns[i], err = genTestTx()
txns[i], randPrevOuts, err = genTestTx()
if err != nil {
t.Fatalf("unable to generate test tx: %v", err)
}
prevOuts.Merge(randPrevOuts)
}
for _, tx := range txns {
cache.AddSigHashes(tx)
cache.AddSigHashes(tx, prevOuts)
}
// Once all the transactions have been inserted, we'll purge them from

View File

@ -1914,7 +1914,7 @@ func opcodeCheckSig(op *opcode, data []byte, vm *Engine) error {
if vm.hashCache != nil {
sigHashes = vm.hashCache
} else {
sigHashes = NewTxSigHashes(&vm.tx)
sigHashes = NewTxSigHashes(&vm.tx, vm.prevOutFetcher)
}
hash, err = calcWitnessSignatureHashRaw(subScript, sigHashes, hashType,
@ -2185,7 +2185,7 @@ func opcodeCheckMultiSig(op *opcode, data []byte, vm *Engine) error {
if vm.hashCache != nil {
sigHashes = vm.hashCache
} else {
sigHashes = NewTxSigHashes(&vm.tx)
sigHashes = NewTxSigHashes(&vm.tx, vm.prevOutFetcher)
}
hash, err = calcWitnessSignatureHashRaw(script, sigHashes, hashType,

View File

@ -15,9 +15,9 @@ import (
"strings"
"testing"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcd/btcutil"
)
// scriptTestName returns a descriptive test name for the given reference script
@ -441,10 +441,14 @@ func testScripts(t *testing.T, tests [][]interface{}, useSigCache bool) {
// Generate a transaction pair such that one spends from the
// other and the provided signature and public key scripts are
// used, then create a new engine to execute the scripts.
tx := createSpendingTx(witness, scriptSig, scriptPubKey,
int64(inputAmt))
vm, err := NewEngine(scriptPubKey, tx, 0, flags, sigCache, nil,
int64(inputAmt))
tx := createSpendingTx(
witness, scriptSig, scriptPubKey, int64(inputAmt),
)
prevOuts := NewCannedPrevOutputFetcher(scriptPubKey, int64(inputAmt))
vm, err := NewEngine(
scriptPubKey, tx, 0, flags, sigCache, nil,
int64(inputAmt), prevOuts,
)
if err == nil {
err = vm.Execute()
}
@ -572,7 +576,7 @@ testloop:
continue
}
prevOuts := make(map[wire.OutPoint]scriptWithInputVal)
prevOutFetcher := NewMultiPrevOutFetcher(nil)
for j, iinput := range inputs {
input, ok := iinput.([]interface{})
if !ok {
@ -633,16 +637,18 @@ testloop:
}
}
v := scriptWithInputVal{
inputVal: int64(inputValue),
pkScript: script,
}
prevOuts[*wire.NewOutPoint(prevhash, idx)] = v
op := wire.NewOutPoint(prevhash, idx)
prevOutFetcher.AddPrevOut(*op, &wire.TxOut{
Value: int64(inputValue),
PkScript: script,
})
}
for k, txin := range tx.MsgTx().TxIn {
prevOut, ok := prevOuts[txin.PreviousOutPoint]
if !ok {
prevOut := prevOutFetcher.FetchPrevOutput(
txin.PreviousOutPoint,
)
if prevOut == nil {
t.Errorf("bad test (missing %dth input) %d:%v",
k, i, test)
continue testloop
@ -650,8 +656,8 @@ testloop:
// These are meant to fail, so as soon as the first
// input fails the transaction has failed. (some of the
// test txns have good inputs, too..
vm, err := NewEngine(prevOut.pkScript, tx.MsgTx(), k,
flags, nil, nil, prevOut.inputVal)
vm, err := NewEngine(prevOut.PkScript, tx.MsgTx(), k,
flags, nil, nil, prevOut.Value, prevOutFetcher)
if err != nil {
continue testloop
}
@ -727,7 +733,7 @@ testloop:
continue
}
prevOuts := make(map[wire.OutPoint]scriptWithInputVal)
prevOutFetcher := NewMultiPrevOutFetcher(nil)
for j, iinput := range inputs {
input, ok := iinput.([]interface{})
if !ok {
@ -788,22 +794,24 @@ testloop:
}
}
v := scriptWithInputVal{
inputVal: int64(inputValue),
pkScript: script,
}
prevOuts[*wire.NewOutPoint(prevhash, idx)] = v
op := wire.NewOutPoint(prevhash, idx)
prevOutFetcher.AddPrevOut(*op, &wire.TxOut{
Value: int64(inputValue),
PkScript: script,
})
}
for k, txin := range tx.MsgTx().TxIn {
prevOut, ok := prevOuts[txin.PreviousOutPoint]
if !ok {
prevOut := prevOutFetcher.FetchPrevOutput(
txin.PreviousOutPoint,
)
if prevOut == nil {
t.Errorf("bad test (missing %dth input) %d:%v",
k, i, test)
continue testloop
}
vm, err := NewEngine(prevOut.pkScript, tx.MsgTx(), k,
flags, nil, nil, prevOut.inputVal)
vm, err := NewEngine(prevOut.PkScript, tx.MsgTx(), k,
flags, nil, nil, prevOut.Value, prevOutFetcher)
if err != nil {
t.Errorf("test (%d:%v:%d) failed to create "+
"script: %v", i, test, k, err)

View File

@ -19,20 +19,17 @@ import (
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
var Bip16Activation = time.Unix(1333238400, 0)
// SigHashType represents hash type bits at the end of a signature.
type SigHashType uint32
// Hash type bits from the end of a signature.
const (
SigHashOld SigHashType = 0x0
SigHashAll SigHashType = 0x1
SigHashNone SigHashType = 0x2
SigHashSingle SigHashType = 0x3
SigHashAnyOneCanPay SigHashType = 0x80
// TaprootAnnexTag is the tag for an annex. This value is used to
// identify the annex during tapscript spends. If there're at least two
// elements in the taproot witness stack, and the first byte of the
// last element matches this tag, then we'll extract this as a distinct
// item.
TaprootAnnexTag = 0x50
// sigHashMask defines the number of bits of the hash type which is used
// to identify which outputs are signed.
sigHashMask = 0x1f
// TaprootLeafMask is the mask applied to the control block to extract
// the leaf versions of the taproot script leaf being spent.
TaprootLeafMask = 0xfe
)
// These are the constants specified for maximums in individual scripts.

View File

@ -44,12 +44,12 @@ func TestSigCacheAddExists(t *testing.T) {
}
// Add the triplet to the signature cache.
sigCache.Add(*msg1, sig1, key1)
sigCache.Add(*msg1, sig1.Serialize(), key1.SerializeCompressed())
// The previously added triplet should now be found within the sigcache.
sig1Copy, _ := ecdsa.ParseSignature(sig1.Serialize())
key1Copy, _ := btcec.ParsePubKey(key1.SerializeCompressed())
if !sigCache.Exists(*msg1, sig1Copy, key1Copy) {
if !sigCache.Exists(*msg1, sig1Copy.Serialize(), key1Copy.SerializeCompressed()) {
t.Errorf("previously added item not found in signature cache")
}
}
@ -69,7 +69,7 @@ func TestSigCacheAddEvictEntry(t *testing.T) {
t.Fatalf("unable to generate random signature test data")
}
sigCache.Add(*msg, sig, key)
sigCache.Add(*msg, sig.Serialize(), key.SerializeCompressed())
sigCopy, err := ecdsa.ParseSignature(sig.Serialize())
if err != nil {
@ -79,7 +79,7 @@ func TestSigCacheAddEvictEntry(t *testing.T) {
if err != nil {
t.Fatalf("unable to parse key: %v", err)
}
if !sigCache.Exists(*msg, sigCopy, keyCopy) {
if !sigCache.Exists(*msg, sigCopy.Serialize(), keyCopy.SerializeCompressed()) {
t.Errorf("previously added item not found in signature" +
"cache")
}
@ -97,7 +97,7 @@ func TestSigCacheAddEvictEntry(t *testing.T) {
if err != nil {
t.Fatalf("unable to generate random signature test data")
}
sigCache.Add(*msgNew, sigNew, keyNew)
sigCache.Add(*msgNew, sigNew.Serialize(), keyNew.SerializeCompressed())
// The sigcache should still have sigCache entries.
if uint(len(sigCache.validSigs)) != sigCacheSize {
@ -108,7 +108,7 @@ func TestSigCacheAddEvictEntry(t *testing.T) {
// The entry added above should be found within the sigcache.
sigNewCopy, _ := ecdsa.ParseSignature(sigNew.Serialize())
keyNewCopy, _ := btcec.ParsePubKey(keyNew.SerializeCompressed())
if !sigCache.Exists(*msgNew, sigNewCopy, keyNewCopy) {
if !sigCache.Exists(*msgNew, sigNewCopy.Serialize(), keyNewCopy.SerializeCompressed()) {
t.Fatalf("previously added item not found in signature cache")
}
}
@ -126,12 +126,12 @@ func TestSigCacheAddMaxEntriesZeroOrNegative(t *testing.T) {
}
// Add the triplet to the signature cache.
sigCache.Add(*msg1, sig1, key1)
sigCache.Add(*msg1, sig1.Serialize(), key1.SerializeCompressed())
// The generated triplet should not be found.
sig1Copy, _ := ecdsa.ParseSignature(sig1.Serialize())
key1Copy, _ := btcec.ParsePubKey(key1.SerializeCompressed())
if sigCache.Exists(*msg1, sig1Copy, key1Copy) {
if sigCache.Exists(*msg1, sig1Copy.Serialize(), key1Copy.SerializeCompressed()) {
t.Errorf("previously added signature found in sigcache, but" +
"shouldn't have been")
}

View File

@ -7,13 +7,39 @@ package txscript
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"fmt"
"io"
"math"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
)
// SigHashType represents hash type bits at the end of a signature.
type SigHashType uint32
// Hash type bits from the end of a signature.
const (
SigHashDefault SigHashType = 0x00
SigHashOld SigHashType = 0x0
SigHashAll SigHashType = 0x1
SigHashNone SigHashType = 0x2
SigHashSingle SigHashType = 0x3
SigHashAnyOneCanPay SigHashType = 0x80
// sigHashMask defines the number of bits of the hash type which is used
// to identify which outputs are signed.
sigHashMask = 0x1f
)
const (
// blankCodeSepValue is the value of the code separator position in the
// tapscript sighash when no code separator was found in the script.
blankCodeSepValue = math.MaxUint32
)
// shallowCopyTx creates a shallow copy of the transaction for use when
// calculating the signature hash. It is used over the Copy method on the
// transaction itself since that is a deep copy and therefore does more work and
@ -188,7 +214,7 @@ func calcWitnessSignatureHashRaw(subScript []byte, sigHashes *TxSigHashes,
// If anyone can pay isn't active, then we can use the cached
// hashPrevOuts, otherwise we just write zeroes for the prev outs.
if hashType&SigHashAnyOneCanPay == 0 {
sigHash.Write(sigHashes.HashPrevOuts[:])
sigHash.Write(sigHashes.HashPrevOutsV0[:])
} else {
sigHash.Write(zeroHash[:])
}
@ -199,7 +225,7 @@ func calcWitnessSignatureHashRaw(subScript []byte, sigHashes *TxSigHashes,
if hashType&SigHashAnyOneCanPay == 0 &&
hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashSequence[:])
sigHash.Write(sigHashes.HashSequenceV0[:])
} else {
sigHash.Write(zeroHash[:])
}
@ -245,7 +271,7 @@ func calcWitnessSignatureHashRaw(subScript []byte, sigHashes *TxSigHashes,
// pre-image.
if hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashOutputs[:])
sigHash.Write(sigHashes.HashOutputsV0[:])
} else if hashType&sigHashMask == SigHashSingle && idx < len(tx.TxOut) {
var b bytes.Buffer
wire.WriteTxOut(&b, 0, 0, tx.TxOut[idx])
@ -278,3 +304,325 @@ func CalcWitnessSigHash(script []byte, sigHashes *TxSigHashes, hType SigHashType
return calcWitnessSignatureHashRaw(script, sigHashes, hType, tx, idx, amt)
}
// sigHashExtFlag represents the sig hash extension flag as defined in BIP 341.
// Extensions to the base sighash algorithm will be appended to the base
// sighash digest.
type sigHashExtFlag uint8
const (
// baseSigHashExtFlag is the base extension flag. This adds no changes
// to the sighash digest message. This is used for segwit v1 spends,
// a.k.a the tapscript keyspend path.
baseSigHashExtFlag sigHashExtFlag = 0
// tapscriptSighashExtFlag is the extension flag defined by tapscript
// base leaf version spend define din BIP 342. This augments the base
// sighash by including the tapscript leaf hash, the key version, and
// the code separator position.
tapscriptSighashExtFlag sigHashExtFlag = 1
)
// taprootSigHashOptions houses a set of functional options that may optionally
// modify how the taproot/script sighash digest algorithm is implemented.
type taprootSigHashOptions struct {
// extFlag denotes the current message digest extension being used. For
// top-level script spends use a value of zero, while each tapscript
// version can define its own values as well.
extFlag sigHashExtFlag
// annexHash is the sha256 hash of the annex with a compact size length
// prefix: sha256(sizeOf(annex) || annex).
annexHash []byte
// tapLeafHash is the hash of the tapscript leaf as defined in BIP 341.
// This should be h_tapleaf(version || compactSizeOf(script) || script).
tapLeafHash []byte
// keyVersion is the key version as defined in BIP 341. This is always
// 0x00 for all currently defined leaf versions.
keyVersion byte
// codeSepPos is the op code position of the last code separator. This
// is used for the BIP 342 sighash message extension.
codeSepPos uint32
}
// writeDigestExtensions writes out the sighah mesage extensiosn defined by the
// current active sigHashExtFlags.
func (t *taprootSigHashOptions) writeDigestExtensions(w io.Writer) error {
switch t.extFlag {
// The base extension, used for tapscript keypath spends doesn't modify
// the digest at all.
case baseSigHashExtFlag:
return nil
// The tapscript base leaf version extension adds the leaf hash, key
// version, and code separator position to the final digest.
case tapscriptSighashExtFlag:
if _, err := w.Write(t.tapLeafHash); err != nil {
return err
}
if _, err := w.Write([]byte{t.keyVersion}); err != nil {
return err
}
err := binary.Write(w, binary.LittleEndian, t.codeSepPos)
if err != nil {
return err
}
}
return nil
}
// defaultTaprootSighashOptions returns the set of default sighash options for
// taproot execution.
func defaultTaprootSighashOptions() *taprootSigHashOptions {
return &taprootSigHashOptions{}
}
// TaprootSigHashOption defines a set of functional param options that can be
// used to modify the base sighash message with optional extensions.
type TaprootSigHashOption func(*taprootSigHashOptions)
// WithAnnex is a functional option that allows the caller to specify the
// existence of an annex in the final witness stack for the taproot/tapscript
// spends.
func WithAnnex(annex []byte) TaprootSigHashOption {
return func(o *taprootSigHashOptions) {
// It's just a bytes.Buffer which never returns an error on
// write.
var b bytes.Buffer
_ = wire.WriteVarBytes(&b, 0, annex)
o.annexHash = chainhash.HashB(b.Bytes())
}
}
// WithBaseTapscriptVersion is a functional option that specifies that the
// sighash digest should include the extra information included as part of the
// base tapscript version.
func WithBaseTapscriptVersion(codeSepPos uint32,
tapLeafHash []byte) TaprootSigHashOption {
return func(o *taprootSigHashOptions) {
o.extFlag = tapscriptSighashExtFlag
o.tapLeafHash = tapLeafHash
o.keyVersion = 0
o.codeSepPos = codeSepPos
}
}
// isValidTaprootSigHash returns true if the passed sighash is a valid taproot
// sighash.
func isValidTaprootSigHash(hashType SigHashType) bool {
switch hashType {
case SigHashDefault, SigHashAll, SigHashNone, SigHashSingle:
fallthrough
case 0x81, 0x82, 0x83:
return true
default:
return false
}
}
// calcTaprootSignatureHashRaw computes the sighash as specified in BIP 143.
// If an invalid sighash type is passed in, an error is returned.
func calcTaprootSignatureHashRaw(sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int,
prevOutFetcher PrevOutputFetcher,
sigHashOpts ...TaprootSigHashOption) ([]byte, error) {
opts := defaultTaprootSighashOptions()
for _, sigHashOpt := range sigHashOpts {
sigHashOpt(opts)
}
// If a valid sighash type isn't passed in, then we'll exit early.
if !isValidTaprootSigHash(hType) {
// TODO(roasbeef): use actual errr here
return nil, fmt.Errorf("invalid taproot sighash type: %v", hType)
}
// As a sanity check, ensure the passed input index for the transaction
// is valid.
if idx > len(tx.TxIn)-1 {
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
}
// We'll utilize this buffer throughout to incrementally calculate
// the signature hash for this transaction.
var sigMsg bytes.Buffer
// The final sighash always has a value of 0x00 prepended to it, which
// is called the sighash epoch.
sigMsg.WriteByte(0x00)
// First, we write the hash type encoded as a single byte.
if err := sigMsg.WriteByte(byte(hType)); err != nil {
return nil, err
}
// Next we'll write out the transaction specific data which binds the
// outer context of the sighash.
err := binary.Write(&sigMsg, binary.LittleEndian, tx.Version)
if err != nil {
return nil, err
}
err = binary.Write(&sigMsg, binary.LittleEndian, tx.LockTime)
if err != nil {
return nil, err
}
// If sighash isn't anyone can pay, then we'll include all the
// pre-computed midstate digests in the sighash.
if hType&SigHashAnyOneCanPay != SigHashAnyOneCanPay {
sigMsg.Write(sigHashes.HashPrevOutsV1[:])
sigMsg.Write(sigHashes.HashInputAmountsV1[:])
sigMsg.Write(sigHashes.HashInputScriptsV1[:])
sigMsg.Write(sigHashes.HashSequenceV1[:])
}
// If this is sighash all, or its taproot alias (sighash default),
// then we'll also include the pre-computed digest of all the outputs
// of the transaction.
if hType&SigHashSingle != SigHashSingle &&
hType&SigHashSingle != SigHashNone {
sigMsg.Write(sigHashes.HashOutputsV1[:])
}
// Next, we'll write out the relevant information for this specific
// input.
//
// The spend type is computed as the (ext_flag*2) + annex_present. We
// use this to bind the extension flag (that BIP 342 uses), as well as
// the annex if its present.
input := tx.TxIn[idx]
witnessHasAnnex := opts.annexHash != nil
spendType := byte(opts.extFlag) * 2
if witnessHasAnnex {
spendType += 1
}
if err := sigMsg.WriteByte(spendType); err != nil {
return nil, err
}
// If anyone can pay is active, then we'll write out just the specific
// information about this input, given we skipped writing all the
// information of all the inputs above.
if hType&SigHashAnyOneCanPay == SigHashAnyOneCanPay {
// We'll start out with writing this input specific information by
// first writing the entire previous output.
err = wire.WriteOutPoint(&sigMsg, 0, 0, &input.PreviousOutPoint)
if err != nil {
return nil, err
}
// Next, we'll write out the previous output (amt+script) being
// spent itself.
prevOut := prevOutFetcher.FetchPrevOutput(input.PreviousOutPoint)
if err := wire.WriteTxOut(&sigMsg, 0, 0, prevOut); err != nil {
return nil, err
}
// Finally, we'll write out the input sequence itself.
err = binary.Write(&sigMsg, binary.LittleEndian, input.Sequence)
if err != nil {
return nil, err
}
} else {
err := binary.Write(&sigMsg, binary.LittleEndian, uint32(idx))
if err != nil {
return nil, err
}
}
// Now that we have the input specific information written, we'll
// include the anex, if we have it.
if witnessHasAnnex {
sigMsg.Write(opts.annexHash)
}
// Finally, if this is sighash single, then we'll write out the
// information for this given output.
if hType&sigHashMask == SigHashSingle {
// If this output doesn't exist, then we'll return with an error
// here as this is an invalid sighash type for this input.
if idx >= len(tx.TxOut) {
// TODO(roasbeef): real error here
return nil, fmt.Errorf("invalid sighash type for input")
}
// Now that we know this is a valid sighash input combination,
// we'll write out the information specific to this input.
// We'll write the wire serialization of the output and compute
// the sha256 in a single step.
shaWriter := sha256.New()
txOut := tx.TxOut[idx]
if err := wire.WriteTxOut(shaWriter, 0, 0, txOut); err != nil {
return nil, err
}
// With the digest obtained, we'll write this out into our
// signature message.
if _, err := sigMsg.Write(shaWriter.Sum(nil)); err != nil {
return nil, err
}
}
// Now that we've written out all the base information, we'll write any
// message extensions (if they exist).
if err := opts.writeDigestExtensions(&sigMsg); err != nil {
return nil, err
}
// The final sighash is computed as: hash_TagSigHash(0x00 || sigMsg).
// We wrote the 0x00 above so we don't need to append here and incur
// extra allocations.
sigHash := chainhash.TaggedHash(chainhash.TagTapSighash, sigMsg.Bytes())
return sigHash[:], nil
}
// CalcTaprootSignatureHash computes the sighash digest of a transaction's
// taproot-spending input using the new sighash digest algorithm described in
// BIP 341. As the new digest algoriths may require the digest to commit to the
// entire prev output, a PrevOutputFetcher argument is required to obtain the
// needed information. The TxSigHashes pre-computed sighash midstate MUST be
// specified.
func CalcTaprootSignatureHash(sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int,
prevOutFetcher PrevOutputFetcher) ([]byte, error) {
return calcTaprootSignatureHashRaw(
sigHashes, hType, tx, idx, prevOutFetcher,
)
}
// CalcTaprootSignatureHash is similar to CalcTaprootSignatureHash but for
// _tapscript_ spends instead. A proper TapLeaf instance (the script leaf being
// signed) must be passed in. The functional options can be used to specify an
// annex if the signature was bound to that context.
//
// NOTE: This function is able to compute the sighash of scripts that contain a
// code separator if the caller passes in an instance of
// WithBaseTapscriptVersion with the valid position.
func CalcTapscriptSignaturehash(sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int, prevOutFetcher PrevOutputFetcher,
tapLeaf TapLeaf,
sigHashOpts ...TaprootSigHashOption) ([]byte, error) {
tapLeafHash := tapLeaf.TapHash()
var opts []TaprootSigHashOption
opts = append(
opts, WithBaseTapscriptVersion(blankCodeSepValue, tapLeafHash[:]),
)
opts = append(opts, sigHashOpts...)
return calcTaprootSignatureHashRaw(
sigHashes, hType, tx, idx, prevOutFetcher, opts...,
)
}

View File

@ -10,10 +10,10 @@ import (
"testing"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcd/btcutil"
)
type addressToKey struct {
@ -56,7 +56,7 @@ func mkGetScript(scripts map[string][]byte) ScriptDB {
func checkScripts(msg string, tx *wire.MsgTx, idx int, inputAmt int64, sigScript, pkScript []byte) error {
tx.TxIn[idx].SignatureScript = sigScript
vm, err := NewEngine(pkScript, tx, idx,
ScriptBip16|ScriptVerifyDERSignatures, nil, nil, inputAmt)
ScriptBip16|ScriptVerifyDERSignatures, nil, nil, inputAmt, nil)
if err != nil {
return fmt.Errorf("failed to make script engine for %s: %v",
msg, err)
@ -1672,7 +1672,7 @@ nexttest:
scriptFlags := ScriptBip16 | ScriptVerifyDERSignatures
for j := range tx.TxIn {
vm, err := NewEngine(sigScriptTests[i].
inputs[j].txout.PkScript, tx, j, scriptFlags, nil, nil, 0)
inputs[j].txout.PkScript, tx, j, scriptFlags, nil, nil, 0, nil)
if err != nil {
t.Errorf("cannot create script vm for test %v: %v",
sigScriptTests[i].name, err)

View File

@ -466,13 +466,25 @@ func isWitnessTaprootScript(script []byte) bool {
// isAnnexedWitness returns true if the passed witness has a final push
// that is a witness annex.
func isAnnexedWitness(witness [][]byte) bool {
const OP_ANNEX = 0x50
func isAnnexedWitness(witness wire.TxWitness) bool {
if len(witness) < 2 {
return false
}
lastElement := witness[len(witness)-1]
return len(lastElement) > 0 && lastElement[0] == OP_ANNEX
return len(lastElement) > 0 && lastElement[0] == TaprootAnnexTag
}
// extractAnnex attempts to extract the annex from the passed witness. If the
// witness doesn't contain an annex, then an error is returned.
func extractAnnex(witness [][]byte) ([]byte, error) {
if !isAnnexedWitness(witness) {
// TODO(roasbeef): make into actual type
return nil, fmt.Errorf("no witness annex")
}
lastElement := witness[len(witness)-1]
return lastElement, nil
}
// isNullDataScript returns whether or not the passed script is a standard