txscript: move sighash computations to new file

This commit is contained in:
Olaoluwa Osuntokun 2022-02-20 16:05:14 -08:00
parent 30d93272a8
commit 6ecc72e5e6
No known key found for this signature in database
GPG key ID: 3BBD59E99B280306
2 changed files with 280 additions and 265 deletions

View file

@ -7,12 +7,10 @@ package txscript
import (
"bytes"
"encoding/binary"
"fmt"
"strings"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
)
@ -298,269 +296,6 @@ func removeOpcodeByData(script []byte, dataToRemove []byte) []byte {
return result
}
// calcWitnessSignatureHashRaw computes the sighash digest of a transaction's
// segwit input using the new, optimized digest calculation algorithm defined
// in BIP0143: https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki.
// This function makes use of pre-calculated sighash fragments stored within
// the passed HashCache to eliminate duplicate hashing computations when
// calculating the final digest, reducing the complexity from O(N^2) to O(N).
// Additionally, signatures now cover the input value of the referenced unspent
// output. This allows offline, or hardware wallets to compute the exact amount
// being spent, in addition to the final transaction fee. In the case the
// wallet if fed an invalid input amount, the real sighash will differ causing
// the produced signature to be invalid.
func calcWitnessSignatureHashRaw(scriptSig []byte, sigHashes *TxSigHashes,
hashType SigHashType, tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
// As a sanity check, ensure the passed input index for the transaction
// is valid.
if idx > len(tx.TxIn)-1 {
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
}
// We'll utilize this buffer throughout to incrementally calculate
// the signature hash for this transaction.
var sigHash bytes.Buffer
// First write out, then encode the transaction's version number.
var bVersion [4]byte
binary.LittleEndian.PutUint32(bVersion[:], uint32(tx.Version))
sigHash.Write(bVersion[:])
// Next write out the possibly pre-calculated hashes for the sequence
// numbers of all inputs, and the hashes of the previous outs for all
// outputs.
var zeroHash chainhash.Hash
// If anyone can pay isn't active, then we can use the cached
// hashPrevOuts, otherwise we just write zeroes for the prev outs.
if hashType&SigHashAnyOneCanPay == 0 {
sigHash.Write(sigHashes.HashPrevOuts[:])
} else {
sigHash.Write(zeroHash[:])
}
// If the sighash isn't anyone can pay, single, or none, the use the
// cached hash sequences, otherwise write all zeroes for the
// hashSequence.
if hashType&SigHashAnyOneCanPay == 0 &&
hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashSequence[:])
} else {
sigHash.Write(zeroHash[:])
}
txIn := tx.TxIn[idx]
// Next, write the outpoint being spent.
sigHash.Write(txIn.PreviousOutPoint.Hash[:])
var bIndex [4]byte
binary.LittleEndian.PutUint32(bIndex[:], txIn.PreviousOutPoint.Index)
sigHash.Write(bIndex[:])
if isWitnessPubKeyHashScript(scriptSig) {
// The script code for a p2wkh is a length prefix varint for
// the next 25 bytes, followed by a re-creation of the original
// p2pkh pk script.
sigHash.Write([]byte{0x19})
sigHash.Write([]byte{OP_DUP})
sigHash.Write([]byte{OP_HASH160})
sigHash.Write([]byte{OP_DATA_20})
sigHash.Write(extractWitnessPubKeyHash(scriptSig))
sigHash.Write([]byte{OP_EQUALVERIFY})
sigHash.Write([]byte{OP_CHECKSIG})
} else {
// For p2wsh outputs, and future outputs, the script code is
// the original script, with all code separators removed,
// serialized with a var int length prefix.
wire.WriteVarBytes(&sigHash, 0, scriptSig)
}
// Next, add the input amount, and sequence number of the input being
// signed.
var bAmount [8]byte
binary.LittleEndian.PutUint64(bAmount[:], uint64(amt))
sigHash.Write(bAmount[:])
var bSequence [4]byte
binary.LittleEndian.PutUint32(bSequence[:], txIn.Sequence)
sigHash.Write(bSequence[:])
// If the current signature mode isn't single, or none, then we can
// re-use the pre-generated hashoutputs sighash fragment. Otherwise,
// we'll serialize and add only the target output index to the signature
// pre-image.
if hashType&SigHashSingle != SigHashSingle &&
hashType&SigHashNone != SigHashNone {
sigHash.Write(sigHashes.HashOutputs[:])
} else if hashType&sigHashMask == SigHashSingle && idx < len(tx.TxOut) {
var b bytes.Buffer
wire.WriteTxOut(&b, 0, 0, tx.TxOut[idx])
sigHash.Write(chainhash.DoubleHashB(b.Bytes()))
} else {
sigHash.Write(zeroHash[:])
}
// Finally, write out the transaction's locktime, and the sig hash
// type.
var bLockTime [4]byte
binary.LittleEndian.PutUint32(bLockTime[:], tx.LockTime)
sigHash.Write(bLockTime[:])
var bHashType [4]byte
binary.LittleEndian.PutUint32(bHashType[:], uint32(hashType))
sigHash.Write(bHashType[:])
return chainhash.DoubleHashB(sigHash.Bytes()), nil
}
// CalcWitnessSigHash computes the sighash digest for the specified input of
// the target transaction observing the desired sig hash type.
func CalcWitnessSigHash(script []byte, sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
const scriptVersion = 0
if err := checkScriptParses(scriptVersion, script); err != nil {
return nil, err
}
return calcWitnessSignatureHashRaw(script, sigHashes, hType, tx, idx, amt)
}
// shallowCopyTx creates a shallow copy of the transaction for use when
// calculating the signature hash. It is used over the Copy method on the
// transaction itself since that is a deep copy and therefore does more work and
// allocates much more space than needed.
func shallowCopyTx(tx *wire.MsgTx) wire.MsgTx {
// As an additional memory optimization, use contiguous backing arrays
// for the copied inputs and outputs and point the final slice of
// pointers into the contiguous arrays. This avoids a lot of small
// allocations.
txCopy := wire.MsgTx{
Version: tx.Version,
TxIn: make([]*wire.TxIn, len(tx.TxIn)),
TxOut: make([]*wire.TxOut, len(tx.TxOut)),
LockTime: tx.LockTime,
}
txIns := make([]wire.TxIn, len(tx.TxIn))
for i, oldTxIn := range tx.TxIn {
txIns[i] = *oldTxIn
txCopy.TxIn[i] = &txIns[i]
}
txOuts := make([]wire.TxOut, len(tx.TxOut))
for i, oldTxOut := range tx.TxOut {
txOuts[i] = *oldTxOut
txCopy.TxOut[i] = &txOuts[i]
}
return txCopy
}
// CalcSignatureHash will, given a script and hash type for the current script
// engine instance, calculate the signature hash to be used for signing and
// verification.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func CalcSignatureHash(script []byte, hashType SigHashType, tx *wire.MsgTx, idx int) ([]byte, error) {
const scriptVersion = 0
if err := checkScriptParses(scriptVersion, script); err != nil {
return nil, err
}
return calcSignatureHash(script, hashType, tx, idx), nil
}
// calcSignatureHash computes the signature hash for the specified input of the
// target transaction observing the desired signature hash type.
func calcSignatureHash(sigScript []byte, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
// The SigHashSingle signature type signs only the corresponding input
// and output (the output with the same index number as the input).
//
// Since transactions can have more inputs than outputs, this means it
// is improper to use SigHashSingle on input indices that don't have a
// corresponding output.
//
// A bug in the original Satoshi client implementation means specifying
// an index that is out of range results in a signature hash of 1 (as a
// uint256 little endian). The original intent appeared to be to
// indicate failure, but unfortunately, it was never checked and thus is
// treated as the actual signature hash. This buggy behavior is now
// part of the consensus and a hard fork would be required to fix it.
//
// Due to this, care must be taken by software that creates transactions
// which make use of SigHashSingle because it can lead to an extremely
// dangerous situation where the invalid inputs will end up signing a
// hash of 1. This in turn presents an opportunity for attackers to
// cleverly construct transactions which can steal those coins provided
// they can reuse signatures.
if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) {
var hash chainhash.Hash
hash[0] = 0x01
return hash[:]
}
// Remove all instances of OP_CODESEPARATOR from the script.
sigScript = removeOpcodeRaw(sigScript, OP_CODESEPARATOR)
// Make a shallow copy of the transaction, zeroing out the script for
// all inputs that are not currently being processed.
txCopy := shallowCopyTx(tx)
for i := range txCopy.TxIn {
if i == idx {
txCopy.TxIn[idx].SignatureScript = sigScript
} else {
txCopy.TxIn[i].SignatureScript = nil
}
}
switch hashType & sigHashMask {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// All but current output get zeroed out.
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = nil
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// Consensus treats undefined hashtypes like normal SigHashAll
// for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// Nothing special here.
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
}
// The final hash is the double sha256 of both the serialized modified
// transaction and the hash type (encoded as a 4-byte little-endian
// value) appended.
wbuf := bytes.NewBuffer(make([]byte, 0, txCopy.SerializeSizeStripped()+4))
txCopy.SerializeNoWitness(wbuf)
binary.Write(wbuf, binary.LittleEndian, hashType)
return chainhash.DoubleHashB(wbuf.Bytes())
}
// asSmallInt returns the passed opcode, which must be true according to
// isSmallInt(), as an integer.
func asSmallInt(op byte) int {

280
txscript/sighash.go Normal file
View file

@ -0,0 +1,280 @@
// Copyright (c) 2013-2017 The btcsuite developers
// Copyright (c) 2015-2019 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"encoding/binary"
"fmt"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
)
// shallowCopyTx creates a shallow copy of the transaction for use when
// calculating the signature hash. It is used over the Copy method on the
// transaction itself since that is a deep copy and therefore does more work and
// allocates much more space than needed.
func shallowCopyTx(tx *wire.MsgTx) wire.MsgTx {
// As an additional memory optimization, use contiguous backing arrays
// for the copied inputs and outputs and point the final slice of
// pointers into the contiguous arrays. This avoids a lot of small
// allocations.
txCopy := wire.MsgTx{
Version: tx.Version,
TxIn: make([]*wire.TxIn, len(tx.TxIn)),
TxOut: make([]*wire.TxOut, len(tx.TxOut)),
LockTime: tx.LockTime,
}
txIns := make([]wire.TxIn, len(tx.TxIn))
for i, oldTxIn := range tx.TxIn {
txIns[i] = *oldTxIn
txCopy.TxIn[i] = &txIns[i]
}
txOuts := make([]wire.TxOut, len(tx.TxOut))
for i, oldTxOut := range tx.TxOut {
txOuts[i] = *oldTxOut
txCopy.TxOut[i] = &txOuts[i]
}
return txCopy
}
// CalcSignatureHash will, given a script and hash type for the current script
// engine instance, calculate the signature hash to be used for signing and
// verification.
//
// NOTE: This function is only valid for version 0 scripts. Since the function
// does not accept a script version, the results are undefined for other script
// versions.
func CalcSignatureHash(script []byte, hashType SigHashType, tx *wire.MsgTx, idx int) ([]byte, error) {
const scriptVersion = 0
if err := checkScriptParses(scriptVersion, script); err != nil {
return nil, err
}
return calcSignatureHash(script, hashType, tx, idx), nil
}
// calcSignatureHash computes the signature hash for the specified input of the
// target transaction observing the desired signature hash type.
func calcSignatureHash(sigScript []byte, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
// The SigHashSingle signature type signs only the corresponding input
// and output (the output with the same index number as the input).
//
// Since transactions can have more inputs than outputs, this means it
// is improper to use SigHashSingle on input indices that don't have a
// corresponding output.
//
// A bug in the original Satoshi client implementation means specifying
// an index that is out of range results in a signature hash of 1 (as a
// uint256 little endian). The original intent appeared to be to
// indicate failure, but unfortunately, it was never checked and thus is
// treated as the actual signature hash. This buggy behavior is now
// part of the consensus and a hard fork would be required to fix it.
//
// Due to this, care must be taken by software that creates transactions
// which make use of SigHashSingle because it can lead to an extremely
// dangerous situation where the invalid inputs will end up signing a
// hash of 1. This in turn presents an opportunity for attackers to
// cleverly construct transactions which can steal those coins provided
// they can reuse signatures.
if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) {
var hash chainhash.Hash
hash[0] = 0x01
return hash[:]
}
// Remove all instances of OP_CODESEPARATOR from the script.
sigScript = removeOpcodeRaw(sigScript, OP_CODESEPARATOR)
// Make a shallow copy of the transaction, zeroing out the script for
// all inputs that are not currently being processed.
txCopy := shallowCopyTx(tx)
for i := range txCopy.TxIn {
if i == idx {
txCopy.TxIn[idx].SignatureScript = sigScript
} else {
txCopy.TxIn[i].SignatureScript = nil
}
}
switch hashType & sigHashMask {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// All but current output get zeroed out.
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = nil
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// Consensus treats undefined hashtypes like normal SigHashAll
// for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// Nothing special here.
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
}
// The final hash is the double sha256 of both the serialized modified
// transaction and the hash type (encoded as a 4-byte little-endian
// value) appended.
wbuf := bytes.NewBuffer(make([]byte, 0, txCopy.SerializeSizeStripped()+4))
txCopy.SerializeNoWitness(wbuf)
binary.Write(wbuf, binary.LittleEndian, hashType)
return chainhash.DoubleHashB(wbuf.Bytes())
}
// calcWitnessSignatureHashRaw computes the sighash digest of a transaction's
// segwit input using the new, optimized digest calculation algorithm defined
// in BIP0143: https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki.
// This function makes use of pre-calculated sighash fragments stored within
// the passed HashCache to eliminate duplicate hashing computations when
// calculating the final digest, reducing the complexity from O(N^2) to O(N).
// Additionally, signatures now cover the input value of the referenced unspent
// output. This allows offline, or hardware wallets to compute the exact amount
// being spent, in addition to the final transaction fee. In the case the
// wallet if fed an invalid input amount, the real sighash will differ causing
// the produced signature to be invalid.
func calcWitnessSignatureHashRaw(subScript []byte, sigHashes *TxSigHashes,
hashType SigHashType, tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
// As a sanity check, ensure the passed input index for the transaction
// is valid.
//
// TODO(roasbeef): check needs to be lifted elsewhere?
if idx > len(tx.TxIn)-1 {
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
}
// We'll utilize this buffer throughout to incrementally calculate
// the signature hash for this transaction.
var sigHash bytes.Buffer
// First write out, then encode the transaction's version number.
var bVersion [4]byte
binary.LittleEndian.PutUint32(bVersion[:], uint32(tx.Version))
sigHash.Write(bVersion[:])
// Next write out the possibly pre-calculated hashes for the sequence
// numbers of all inputs, and the hashes of the previous outs for all
// outputs.
var zeroHash chainhash.Hash
// If anyone can pay isn't active, then we can use the cached
// hashPrevOuts, otherwise we just write zeroes for the prev outs.
if hashType&SigHashAnyOneCanPay == 0 {
sigHash.Write(sigHashes.HashPrevOuts[:])
} else {
sigHash.Write(zeroHash[:])
}
// If the sighash isn't anyone can pay, single, or none, the use the
// cached hash sequences, otherwise write all zeroes for the
// hashSequence.
if hashType&SigHashAnyOneCanPay == 0 &&
hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashSequence[:])
} else {
sigHash.Write(zeroHash[:])
}
txIn := tx.TxIn[idx]
// Next, write the outpoint being spent.
sigHash.Write(txIn.PreviousOutPoint.Hash[:])
var bIndex [4]byte
binary.LittleEndian.PutUint32(bIndex[:], txIn.PreviousOutPoint.Index)
sigHash.Write(bIndex[:])
if isWitnessPubKeyHashScript(subScript) {
// The script code for a p2wkh is a length prefix varint for
// the next 25 bytes, followed by a re-creation of the original
// p2pkh pk script.
sigHash.Write([]byte{0x19})
sigHash.Write([]byte{OP_DUP})
sigHash.Write([]byte{OP_HASH160})
sigHash.Write([]byte{OP_DATA_20})
sigHash.Write(extractWitnessPubKeyHash(subScript))
sigHash.Write([]byte{OP_EQUALVERIFY})
sigHash.Write([]byte{OP_CHECKSIG})
} else {
// For p2wsh outputs, and future outputs, the script code is
// the original script, with all code separators removed,
// serialized with a var int length prefix.
wire.WriteVarBytes(&sigHash, 0, subScript)
}
// Next, add the input amount, and sequence number of the input being
// signed.
var bAmount [8]byte
binary.LittleEndian.PutUint64(bAmount[:], uint64(amt))
sigHash.Write(bAmount[:])
var bSequence [4]byte
binary.LittleEndian.PutUint32(bSequence[:], txIn.Sequence)
sigHash.Write(bSequence[:])
// If the current signature mode isn't single, or none, then we can
// re-use the pre-generated hashoutputs sighash fragment. Otherwise,
// we'll serialize and add only the target output index to the signature
// pre-image.
if hashType&sigHashMask != SigHashSingle &&
hashType&sigHashMask != SigHashNone {
sigHash.Write(sigHashes.HashOutputs[:])
} else if hashType&sigHashMask == SigHashSingle && idx < len(tx.TxOut) {
var b bytes.Buffer
wire.WriteTxOut(&b, 0, 0, tx.TxOut[idx])
sigHash.Write(chainhash.DoubleHashB(b.Bytes()))
} else {
sigHash.Write(zeroHash[:])
}
// Finally, write out the transaction's locktime, and the sig hash
// type.
var bLockTime [4]byte
binary.LittleEndian.PutUint32(bLockTime[:], tx.LockTime)
sigHash.Write(bLockTime[:])
var bHashType [4]byte
binary.LittleEndian.PutUint32(bHashType[:], uint32(hashType))
sigHash.Write(bHashType[:])
return chainhash.DoubleHashB(sigHash.Bytes()), nil
}
// CalcWitnessSigHash computes the sighash digest for the specified input of
// the target transaction observing the desired sig hash type.
func CalcWitnessSigHash(script []byte, sigHashes *TxSigHashes, hType SigHashType,
tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
const scriptVersion = 0
if err := checkScriptParses(scriptVersion, script); err != nil {
return nil, err
}
return calcWitnessSignatureHashRaw(script, sigHashes, hType, tx, idx, amt)
}