mirror of
https://github.com/btcsuite/btcd.git
synced 2025-01-19 05:33:36 +01:00
e781b66e2f
In this commit, we implement the new BIP 341+342 taproot sighash digest computation. The digest is similar, but re-orders some fragments and also starts to commit to the input values of all the transactions in the SIGHASH_ALL case. A new implicit sighash flag, SIGHASH_DEFAULT has been added that allows signatures to always be 64-bytes for the common case. The hashcache has been updated as well to store both the v0 and v1 mid state hashes. The v0 hashes are a double-sha of the contents, while the v1 hash is a single sha. As a result, if a transaction spends both v0 and v1 inputs, then we 're able to re-use all the intermediate hashes. As the sighash computation needs the input values and scripts, we create an abstraction: the PrevOutFetcher to give the caller flexibility w.r.t how this is done. We also create a `CannedPrevOutputFetcher` that holds the information in a map for a single input. A series of function options are also added to allow re-use of the same base sig hash calculation for both BIP 341 and 342.
629 lines
21 KiB
Go
629 lines
21 KiB
Go
// Copyright (c) 2013-2017 The btcsuite developers
|
|
// Copyright (c) 2015-2019 The Decred developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package txscript
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/wire"
|
|
)
|
|
|
|
// SigHashType represents hash type bits at the end of a signature.
|
|
type SigHashType uint32
|
|
|
|
// Hash type bits from the end of a signature.
|
|
const (
|
|
SigHashDefault SigHashType = 0x00
|
|
SigHashOld SigHashType = 0x0
|
|
SigHashAll SigHashType = 0x1
|
|
SigHashNone SigHashType = 0x2
|
|
SigHashSingle SigHashType = 0x3
|
|
SigHashAnyOneCanPay SigHashType = 0x80
|
|
|
|
// sigHashMask defines the number of bits of the hash type which is used
|
|
// to identify which outputs are signed.
|
|
sigHashMask = 0x1f
|
|
)
|
|
|
|
const (
|
|
// blankCodeSepValue is the value of the code separator position in the
|
|
// tapscript sighash when no code separator was found in the script.
|
|
blankCodeSepValue = math.MaxUint32
|
|
)
|
|
|
|
// shallowCopyTx creates a shallow copy of the transaction for use when
|
|
// calculating the signature hash. It is used over the Copy method on the
|
|
// transaction itself since that is a deep copy and therefore does more work and
|
|
// allocates much more space than needed.
|
|
func shallowCopyTx(tx *wire.MsgTx) wire.MsgTx {
|
|
// As an additional memory optimization, use contiguous backing arrays
|
|
// for the copied inputs and outputs and point the final slice of
|
|
// pointers into the contiguous arrays. This avoids a lot of small
|
|
// allocations.
|
|
txCopy := wire.MsgTx{
|
|
Version: tx.Version,
|
|
TxIn: make([]*wire.TxIn, len(tx.TxIn)),
|
|
TxOut: make([]*wire.TxOut, len(tx.TxOut)),
|
|
LockTime: tx.LockTime,
|
|
}
|
|
txIns := make([]wire.TxIn, len(tx.TxIn))
|
|
for i, oldTxIn := range tx.TxIn {
|
|
txIns[i] = *oldTxIn
|
|
txCopy.TxIn[i] = &txIns[i]
|
|
}
|
|
txOuts := make([]wire.TxOut, len(tx.TxOut))
|
|
for i, oldTxOut := range tx.TxOut {
|
|
txOuts[i] = *oldTxOut
|
|
txCopy.TxOut[i] = &txOuts[i]
|
|
}
|
|
return txCopy
|
|
}
|
|
|
|
// CalcSignatureHash will, given a script and hash type for the current script
|
|
// engine instance, calculate the signature hash to be used for signing and
|
|
// verification.
|
|
//
|
|
// NOTE: This function is only valid for version 0 scripts. Since the function
|
|
// does not accept a script version, the results are undefined for other script
|
|
// versions.
|
|
func CalcSignatureHash(script []byte, hashType SigHashType, tx *wire.MsgTx, idx int) ([]byte, error) {
|
|
const scriptVersion = 0
|
|
if err := checkScriptParses(scriptVersion, script); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return calcSignatureHash(script, hashType, tx, idx), nil
|
|
}
|
|
|
|
// calcSignatureHash computes the signature hash for the specified input of the
|
|
// target transaction observing the desired signature hash type.
|
|
func calcSignatureHash(sigScript []byte, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
|
|
// The SigHashSingle signature type signs only the corresponding input
|
|
// and output (the output with the same index number as the input).
|
|
//
|
|
// Since transactions can have more inputs than outputs, this means it
|
|
// is improper to use SigHashSingle on input indices that don't have a
|
|
// corresponding output.
|
|
//
|
|
// A bug in the original Satoshi client implementation means specifying
|
|
// an index that is out of range results in a signature hash of 1 (as a
|
|
// uint256 little endian). The original intent appeared to be to
|
|
// indicate failure, but unfortunately, it was never checked and thus is
|
|
// treated as the actual signature hash. This buggy behavior is now
|
|
// part of the consensus and a hard fork would be required to fix it.
|
|
//
|
|
// Due to this, care must be taken by software that creates transactions
|
|
// which make use of SigHashSingle because it can lead to an extremely
|
|
// dangerous situation where the invalid inputs will end up signing a
|
|
// hash of 1. This in turn presents an opportunity for attackers to
|
|
// cleverly construct transactions which can steal those coins provided
|
|
// they can reuse signatures.
|
|
if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) {
|
|
var hash chainhash.Hash
|
|
hash[0] = 0x01
|
|
return hash[:]
|
|
}
|
|
|
|
// Remove all instances of OP_CODESEPARATOR from the script.
|
|
sigScript = removeOpcodeRaw(sigScript, OP_CODESEPARATOR)
|
|
|
|
// Make a shallow copy of the transaction, zeroing out the script for
|
|
// all inputs that are not currently being processed.
|
|
txCopy := shallowCopyTx(tx)
|
|
for i := range txCopy.TxIn {
|
|
if i == idx {
|
|
txCopy.TxIn[idx].SignatureScript = sigScript
|
|
} else {
|
|
txCopy.TxIn[i].SignatureScript = nil
|
|
}
|
|
}
|
|
|
|
switch hashType & sigHashMask {
|
|
case SigHashNone:
|
|
txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice.
|
|
for i := range txCopy.TxIn {
|
|
if i != idx {
|
|
txCopy.TxIn[i].Sequence = 0
|
|
}
|
|
}
|
|
|
|
case SigHashSingle:
|
|
// Resize output array to up to and including requested index.
|
|
txCopy.TxOut = txCopy.TxOut[:idx+1]
|
|
|
|
// All but current output get zeroed out.
|
|
for i := 0; i < idx; i++ {
|
|
txCopy.TxOut[i].Value = -1
|
|
txCopy.TxOut[i].PkScript = nil
|
|
}
|
|
|
|
// Sequence on all other inputs is 0, too.
|
|
for i := range txCopy.TxIn {
|
|
if i != idx {
|
|
txCopy.TxIn[i].Sequence = 0
|
|
}
|
|
}
|
|
|
|
default:
|
|
// Consensus treats undefined hashtypes like normal SigHashAll
|
|
// for purposes of hash generation.
|
|
fallthrough
|
|
case SigHashOld:
|
|
fallthrough
|
|
case SigHashAll:
|
|
// Nothing special here.
|
|
}
|
|
if hashType&SigHashAnyOneCanPay != 0 {
|
|
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
|
|
}
|
|
|
|
// The final hash is the double sha256 of both the serialized modified
|
|
// transaction and the hash type (encoded as a 4-byte little-endian
|
|
// value) appended.
|
|
wbuf := bytes.NewBuffer(make([]byte, 0, txCopy.SerializeSizeStripped()+4))
|
|
txCopy.SerializeNoWitness(wbuf)
|
|
binary.Write(wbuf, binary.LittleEndian, hashType)
|
|
return chainhash.DoubleHashB(wbuf.Bytes())
|
|
}
|
|
|
|
// calcWitnessSignatureHashRaw computes the sighash digest of a transaction's
|
|
// segwit input using the new, optimized digest calculation algorithm defined
|
|
// in BIP0143: https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki.
|
|
// This function makes use of pre-calculated sighash fragments stored within
|
|
// the passed HashCache to eliminate duplicate hashing computations when
|
|
// calculating the final digest, reducing the complexity from O(N^2) to O(N).
|
|
// Additionally, signatures now cover the input value of the referenced unspent
|
|
// output. This allows offline, or hardware wallets to compute the exact amount
|
|
// being spent, in addition to the final transaction fee. In the case the
|
|
// wallet if fed an invalid input amount, the real sighash will differ causing
|
|
// the produced signature to be invalid.
|
|
func calcWitnessSignatureHashRaw(subScript []byte, sigHashes *TxSigHashes,
|
|
hashType SigHashType, tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
|
|
|
|
// As a sanity check, ensure the passed input index for the transaction
|
|
// is valid.
|
|
//
|
|
// TODO(roasbeef): check needs to be lifted elsewhere?
|
|
if idx > len(tx.TxIn)-1 {
|
|
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
|
|
}
|
|
|
|
// We'll utilize this buffer throughout to incrementally calculate
|
|
// the signature hash for this transaction.
|
|
var sigHash bytes.Buffer
|
|
|
|
// First write out, then encode the transaction's version number.
|
|
var bVersion [4]byte
|
|
binary.LittleEndian.PutUint32(bVersion[:], uint32(tx.Version))
|
|
sigHash.Write(bVersion[:])
|
|
|
|
// Next write out the possibly pre-calculated hashes for the sequence
|
|
// numbers of all inputs, and the hashes of the previous outs for all
|
|
// outputs.
|
|
var zeroHash chainhash.Hash
|
|
|
|
// If anyone can pay isn't active, then we can use the cached
|
|
// hashPrevOuts, otherwise we just write zeroes for the prev outs.
|
|
if hashType&SigHashAnyOneCanPay == 0 {
|
|
sigHash.Write(sigHashes.HashPrevOutsV0[:])
|
|
} else {
|
|
sigHash.Write(zeroHash[:])
|
|
}
|
|
|
|
// If the sighash isn't anyone can pay, single, or none, the use the
|
|
// cached hash sequences, otherwise write all zeroes for the
|
|
// hashSequence.
|
|
if hashType&SigHashAnyOneCanPay == 0 &&
|
|
hashType&sigHashMask != SigHashSingle &&
|
|
hashType&sigHashMask != SigHashNone {
|
|
sigHash.Write(sigHashes.HashSequenceV0[:])
|
|
} else {
|
|
sigHash.Write(zeroHash[:])
|
|
}
|
|
|
|
txIn := tx.TxIn[idx]
|
|
|
|
// Next, write the outpoint being spent.
|
|
sigHash.Write(txIn.PreviousOutPoint.Hash[:])
|
|
var bIndex [4]byte
|
|
binary.LittleEndian.PutUint32(bIndex[:], txIn.PreviousOutPoint.Index)
|
|
sigHash.Write(bIndex[:])
|
|
|
|
if isWitnessPubKeyHashScript(subScript) {
|
|
// The script code for a p2wkh is a length prefix varint for
|
|
// the next 25 bytes, followed by a re-creation of the original
|
|
// p2pkh pk script.
|
|
sigHash.Write([]byte{0x19})
|
|
sigHash.Write([]byte{OP_DUP})
|
|
sigHash.Write([]byte{OP_HASH160})
|
|
sigHash.Write([]byte{OP_DATA_20})
|
|
sigHash.Write(extractWitnessPubKeyHash(subScript))
|
|
sigHash.Write([]byte{OP_EQUALVERIFY})
|
|
sigHash.Write([]byte{OP_CHECKSIG})
|
|
} else {
|
|
// For p2wsh outputs, and future outputs, the script code is
|
|
// the original script, with all code separators removed,
|
|
// serialized with a var int length prefix.
|
|
wire.WriteVarBytes(&sigHash, 0, subScript)
|
|
}
|
|
|
|
// Next, add the input amount, and sequence number of the input being
|
|
// signed.
|
|
var bAmount [8]byte
|
|
binary.LittleEndian.PutUint64(bAmount[:], uint64(amt))
|
|
sigHash.Write(bAmount[:])
|
|
var bSequence [4]byte
|
|
binary.LittleEndian.PutUint32(bSequence[:], txIn.Sequence)
|
|
sigHash.Write(bSequence[:])
|
|
|
|
// If the current signature mode isn't single, or none, then we can
|
|
// re-use the pre-generated hashoutputs sighash fragment. Otherwise,
|
|
// we'll serialize and add only the target output index to the signature
|
|
// pre-image.
|
|
if hashType&sigHashMask != SigHashSingle &&
|
|
hashType&sigHashMask != SigHashNone {
|
|
sigHash.Write(sigHashes.HashOutputsV0[:])
|
|
} else if hashType&sigHashMask == SigHashSingle && idx < len(tx.TxOut) {
|
|
var b bytes.Buffer
|
|
wire.WriteTxOut(&b, 0, 0, tx.TxOut[idx])
|
|
sigHash.Write(chainhash.DoubleHashB(b.Bytes()))
|
|
} else {
|
|
sigHash.Write(zeroHash[:])
|
|
}
|
|
|
|
// Finally, write out the transaction's locktime, and the sig hash
|
|
// type.
|
|
var bLockTime [4]byte
|
|
binary.LittleEndian.PutUint32(bLockTime[:], tx.LockTime)
|
|
sigHash.Write(bLockTime[:])
|
|
var bHashType [4]byte
|
|
binary.LittleEndian.PutUint32(bHashType[:], uint32(hashType))
|
|
sigHash.Write(bHashType[:])
|
|
|
|
return chainhash.DoubleHashB(sigHash.Bytes()), nil
|
|
}
|
|
|
|
// CalcWitnessSigHash computes the sighash digest for the specified input of
|
|
// the target transaction observing the desired sig hash type.
|
|
func CalcWitnessSigHash(script []byte, sigHashes *TxSigHashes, hType SigHashType,
|
|
tx *wire.MsgTx, idx int, amt int64) ([]byte, error) {
|
|
|
|
const scriptVersion = 0
|
|
if err := checkScriptParses(scriptVersion, script); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return calcWitnessSignatureHashRaw(script, sigHashes, hType, tx, idx, amt)
|
|
}
|
|
|
|
// sigHashExtFlag represents the sig hash extension flag as defined in BIP 341.
|
|
// Extensions to the base sighash algorithm will be appended to the base
|
|
// sighash digest.
|
|
type sigHashExtFlag uint8
|
|
|
|
const (
|
|
// baseSigHashExtFlag is the base extension flag. This adds no changes
|
|
// to the sighash digest message. This is used for segwit v1 spends,
|
|
// a.k.a the tapscript keyspend path.
|
|
baseSigHashExtFlag sigHashExtFlag = 0
|
|
|
|
// tapscriptSighashExtFlag is the extension flag defined by tapscript
|
|
// base leaf version spend define din BIP 342. This augments the base
|
|
// sighash by including the tapscript leaf hash, the key version, and
|
|
// the code separator position.
|
|
tapscriptSighashExtFlag sigHashExtFlag = 1
|
|
)
|
|
|
|
// taprootSigHashOptions houses a set of functional options that may optionally
|
|
// modify how the taproot/script sighash digest algorithm is implemented.
|
|
type taprootSigHashOptions struct {
|
|
// extFlag denotes the current message digest extension being used. For
|
|
// top-level script spends use a value of zero, while each tapscript
|
|
// version can define its own values as well.
|
|
extFlag sigHashExtFlag
|
|
|
|
// annexHash is the sha256 hash of the annex with a compact size length
|
|
// prefix: sha256(sizeOf(annex) || annex).
|
|
annexHash []byte
|
|
|
|
// tapLeafHash is the hash of the tapscript leaf as defined in BIP 341.
|
|
// This should be h_tapleaf(version || compactSizeOf(script) || script).
|
|
tapLeafHash []byte
|
|
|
|
// keyVersion is the key version as defined in BIP 341. This is always
|
|
// 0x00 for all currently defined leaf versions.
|
|
keyVersion byte
|
|
|
|
// codeSepPos is the op code position of the last code separator. This
|
|
// is used for the BIP 342 sighash message extension.
|
|
codeSepPos uint32
|
|
}
|
|
|
|
// writeDigestExtensions writes out the sighah mesage extensiosn defined by the
|
|
// current active sigHashExtFlags.
|
|
func (t *taprootSigHashOptions) writeDigestExtensions(w io.Writer) error {
|
|
switch t.extFlag {
|
|
// The base extension, used for tapscript keypath spends doesn't modify
|
|
// the digest at all.
|
|
case baseSigHashExtFlag:
|
|
return nil
|
|
|
|
// The tapscript base leaf version extension adds the leaf hash, key
|
|
// version, and code separator position to the final digest.
|
|
case tapscriptSighashExtFlag:
|
|
if _, err := w.Write(t.tapLeafHash); err != nil {
|
|
return err
|
|
}
|
|
if _, err := w.Write([]byte{t.keyVersion}); err != nil {
|
|
return err
|
|
}
|
|
err := binary.Write(w, binary.LittleEndian, t.codeSepPos)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// defaultTaprootSighashOptions returns the set of default sighash options for
|
|
// taproot execution.
|
|
func defaultTaprootSighashOptions() *taprootSigHashOptions {
|
|
return &taprootSigHashOptions{}
|
|
}
|
|
|
|
// TaprootSigHashOption defines a set of functional param options that can be
|
|
// used to modify the base sighash message with optional extensions.
|
|
type TaprootSigHashOption func(*taprootSigHashOptions)
|
|
|
|
// WithAnnex is a functional option that allows the caller to specify the
|
|
// existence of an annex in the final witness stack for the taproot/tapscript
|
|
// spends.
|
|
func WithAnnex(annex []byte) TaprootSigHashOption {
|
|
return func(o *taprootSigHashOptions) {
|
|
// It's just a bytes.Buffer which never returns an error on
|
|
// write.
|
|
var b bytes.Buffer
|
|
_ = wire.WriteVarBytes(&b, 0, annex)
|
|
|
|
o.annexHash = chainhash.HashB(b.Bytes())
|
|
}
|
|
}
|
|
|
|
// WithBaseTapscriptVersion is a functional option that specifies that the
|
|
// sighash digest should include the extra information included as part of the
|
|
// base tapscript version.
|
|
func WithBaseTapscriptVersion(codeSepPos uint32,
|
|
tapLeafHash []byte) TaprootSigHashOption {
|
|
|
|
return func(o *taprootSigHashOptions) {
|
|
o.extFlag = tapscriptSighashExtFlag
|
|
o.tapLeafHash = tapLeafHash
|
|
o.keyVersion = 0
|
|
o.codeSepPos = codeSepPos
|
|
}
|
|
}
|
|
|
|
// isValidTaprootSigHash returns true if the passed sighash is a valid taproot
|
|
// sighash.
|
|
func isValidTaprootSigHash(hashType SigHashType) bool {
|
|
switch hashType {
|
|
case SigHashDefault, SigHashAll, SigHashNone, SigHashSingle:
|
|
fallthrough
|
|
case 0x81, 0x82, 0x83:
|
|
return true
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// calcTaprootSignatureHashRaw computes the sighash as specified in BIP 143.
|
|
// If an invalid sighash type is passed in, an error is returned.
|
|
func calcTaprootSignatureHashRaw(sigHashes *TxSigHashes, hType SigHashType,
|
|
tx *wire.MsgTx, idx int,
|
|
prevOutFetcher PrevOutputFetcher,
|
|
sigHashOpts ...TaprootSigHashOption) ([]byte, error) {
|
|
|
|
opts := defaultTaprootSighashOptions()
|
|
for _, sigHashOpt := range sigHashOpts {
|
|
sigHashOpt(opts)
|
|
}
|
|
|
|
// If a valid sighash type isn't passed in, then we'll exit early.
|
|
if !isValidTaprootSigHash(hType) {
|
|
// TODO(roasbeef): use actual errr here
|
|
return nil, fmt.Errorf("invalid taproot sighash type: %v", hType)
|
|
}
|
|
|
|
// As a sanity check, ensure the passed input index for the transaction
|
|
// is valid.
|
|
if idx > len(tx.TxIn)-1 {
|
|
return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn))
|
|
}
|
|
|
|
// We'll utilize this buffer throughout to incrementally calculate
|
|
// the signature hash for this transaction.
|
|
var sigMsg bytes.Buffer
|
|
|
|
// The final sighash always has a value of 0x00 prepended to it, which
|
|
// is called the sighash epoch.
|
|
sigMsg.WriteByte(0x00)
|
|
|
|
// First, we write the hash type encoded as a single byte.
|
|
if err := sigMsg.WriteByte(byte(hType)); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next we'll write out the transaction specific data which binds the
|
|
// outer context of the sighash.
|
|
err := binary.Write(&sigMsg, binary.LittleEndian, tx.Version)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
err = binary.Write(&sigMsg, binary.LittleEndian, tx.LockTime)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If sighash isn't anyone can pay, then we'll include all the
|
|
// pre-computed midstate digests in the sighash.
|
|
if hType&SigHashAnyOneCanPay != SigHashAnyOneCanPay {
|
|
sigMsg.Write(sigHashes.HashPrevOutsV1[:])
|
|
sigMsg.Write(sigHashes.HashInputAmountsV1[:])
|
|
sigMsg.Write(sigHashes.HashInputScriptsV1[:])
|
|
sigMsg.Write(sigHashes.HashSequenceV1[:])
|
|
}
|
|
|
|
// If this is sighash all, or its taproot alias (sighash default),
|
|
// then we'll also include the pre-computed digest of all the outputs
|
|
// of the transaction.
|
|
if hType&SigHashSingle != SigHashSingle &&
|
|
hType&SigHashSingle != SigHashNone {
|
|
|
|
sigMsg.Write(sigHashes.HashOutputsV1[:])
|
|
}
|
|
|
|
// Next, we'll write out the relevant information for this specific
|
|
// input.
|
|
//
|
|
// The spend type is computed as the (ext_flag*2) + annex_present. We
|
|
// use this to bind the extension flag (that BIP 342 uses), as well as
|
|
// the annex if its present.
|
|
input := tx.TxIn[idx]
|
|
witnessHasAnnex := opts.annexHash != nil
|
|
spendType := byte(opts.extFlag) * 2
|
|
if witnessHasAnnex {
|
|
spendType += 1
|
|
}
|
|
|
|
if err := sigMsg.WriteByte(spendType); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If anyone can pay is active, then we'll write out just the specific
|
|
// information about this input, given we skipped writing all the
|
|
// information of all the inputs above.
|
|
if hType&SigHashAnyOneCanPay == SigHashAnyOneCanPay {
|
|
// We'll start out with writing this input specific information by
|
|
// first writing the entire previous output.
|
|
err = wire.WriteOutPoint(&sigMsg, 0, 0, &input.PreviousOutPoint)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next, we'll write out the previous output (amt+script) being
|
|
// spent itself.
|
|
prevOut := prevOutFetcher.FetchPrevOutput(input.PreviousOutPoint)
|
|
if err := wire.WriteTxOut(&sigMsg, 0, 0, prevOut); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Finally, we'll write out the input sequence itself.
|
|
err = binary.Write(&sigMsg, binary.LittleEndian, input.Sequence)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
} else {
|
|
err := binary.Write(&sigMsg, binary.LittleEndian, uint32(idx))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Now that we have the input specific information written, we'll
|
|
// include the anex, if we have it.
|
|
if witnessHasAnnex {
|
|
sigMsg.Write(opts.annexHash)
|
|
}
|
|
|
|
// Finally, if this is sighash single, then we'll write out the
|
|
// information for this given output.
|
|
if hType&sigHashMask == SigHashSingle {
|
|
// If this output doesn't exist, then we'll return with an error
|
|
// here as this is an invalid sighash type for this input.
|
|
if idx >= len(tx.TxOut) {
|
|
// TODO(roasbeef): real error here
|
|
return nil, fmt.Errorf("invalid sighash type for input")
|
|
}
|
|
|
|
// Now that we know this is a valid sighash input combination,
|
|
// we'll write out the information specific to this input.
|
|
// We'll write the wire serialization of the output and compute
|
|
// the sha256 in a single step.
|
|
shaWriter := sha256.New()
|
|
txOut := tx.TxOut[idx]
|
|
if err := wire.WriteTxOut(shaWriter, 0, 0, txOut); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// With the digest obtained, we'll write this out into our
|
|
// signature message.
|
|
if _, err := sigMsg.Write(shaWriter.Sum(nil)); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Now that we've written out all the base information, we'll write any
|
|
// message extensions (if they exist).
|
|
if err := opts.writeDigestExtensions(&sigMsg); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// The final sighash is computed as: hash_TagSigHash(0x00 || sigMsg).
|
|
// We wrote the 0x00 above so we don't need to append here and incur
|
|
// extra allocations.
|
|
sigHash := chainhash.TaggedHash(chainhash.TagTapSighash, sigMsg.Bytes())
|
|
return sigHash[:], nil
|
|
}
|
|
|
|
// CalcTaprootSignatureHash computes the sighash digest of a transaction's
|
|
// taproot-spending input using the new sighash digest algorithm described in
|
|
// BIP 341. As the new digest algoriths may require the digest to commit to the
|
|
// entire prev output, a PrevOutputFetcher argument is required to obtain the
|
|
// needed information. The TxSigHashes pre-computed sighash midstate MUST be
|
|
// specified.
|
|
func CalcTaprootSignatureHash(sigHashes *TxSigHashes, hType SigHashType,
|
|
tx *wire.MsgTx, idx int,
|
|
prevOutFetcher PrevOutputFetcher) ([]byte, error) {
|
|
|
|
return calcTaprootSignatureHashRaw(
|
|
sigHashes, hType, tx, idx, prevOutFetcher,
|
|
)
|
|
}
|
|
|
|
// CalcTaprootSignatureHash is similar to CalcTaprootSignatureHash but for
|
|
// _tapscript_ spends instead. A proper TapLeaf instance (the script leaf being
|
|
// signed) must be passed in. The functional options can be used to specify an
|
|
// annex if the signature was bound to that context.
|
|
//
|
|
// NOTE: This function is able to compute the sighash of scripts that contain a
|
|
// code separator if the caller passes in an instance of
|
|
// WithBaseTapscriptVersion with the valid position.
|
|
func CalcTapscriptSignaturehash(sigHashes *TxSigHashes, hType SigHashType,
|
|
tx *wire.MsgTx, idx int, prevOutFetcher PrevOutputFetcher,
|
|
tapLeaf TapLeaf,
|
|
sigHashOpts ...TaprootSigHashOption) ([]byte, error) {
|
|
|
|
tapLeafHash := tapLeaf.TapHash()
|
|
|
|
var opts []TaprootSigHashOption
|
|
opts = append(
|
|
opts, WithBaseTapscriptVersion(blankCodeSepValue, tapLeafHash[:]),
|
|
)
|
|
opts = append(opts, sigHashOpts...)
|
|
|
|
return calcTaprootSignatureHashRaw(
|
|
sigHashes, hType, tx, idx, prevOutFetcher, opts...,
|
|
)
|
|
}
|