bitcoin/src/uint256.h
Andrew Chow 7952a5934a
Merge bitcoin/bitcoin#27927: util: Allow std::byte and char Span serialization
fa38d86235 Use only Span{} constructor for byte-like types where possible (MarcoFalke)
fa257bc831 util: Allow std::byte and char Span serialization (MarcoFalke)

Pull request description:

  Seems odd to require developers to cast all byte-like spans passed to serialization to `unsigned char`-spans. Fix that by passing and accepting byte-like spans as-is. Finally, add tests and update the code to use just `Span` where possible.

ACKs for top commit:
  sipa:
    utACK fa38d86235
  achow101:
    ACK fa38d86235
  ryanofsky:
    Code review ACK fa38d86235. This looks great. The second commit really removes a lot of boilerplate and shows why the first commit is useful.

Tree-SHA512: 788592d9ff515c3ebe73d48f9ecbb8d239f5b985af86f09974e508cafb0ca6d73a959350295246b4dfb496149bc56330a0b5d659fc434ba6723dbaba0b7a49e5
2023-06-28 15:12:12 -04:00

137 lines
4.2 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H
#include <crypto/common.h>
#include <span.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cstring>
#include <stdint.h>
#include <string>
/** Template base class for fixed-sized opaque blobs. */
template<unsigned int BITS>
class base_blob
{
protected:
static constexpr int WIDTH = BITS / 8;
static_assert(BITS % 8 == 0, "base_blob currently only supports whole bytes.");
std::array<uint8_t, WIDTH> m_data;
static_assert(WIDTH == sizeof(m_data), "Sanity check");
public:
/* construct 0 value by default */
constexpr base_blob() : m_data() {}
/* constructor for constants between 1 and 255 */
constexpr explicit base_blob(uint8_t v) : m_data{v} {}
constexpr explicit base_blob(Span<const unsigned char> vch)
{
assert(vch.size() == WIDTH);
std::copy(vch.begin(), vch.end(), m_data.begin());
}
constexpr bool IsNull() const
{
return std::all_of(m_data.begin(), m_data.end(), [](uint8_t val) {
return val == 0;
});
}
constexpr void SetNull()
{
std::fill(m_data.begin(), m_data.end(), 0);
}
constexpr int Compare(const base_blob& other) const { return std::memcmp(m_data.data(), other.m_data.data(), WIDTH); }
friend constexpr bool operator==(const base_blob& a, const base_blob& b) { return a.Compare(b) == 0; }
friend constexpr bool operator!=(const base_blob& a, const base_blob& b) { return a.Compare(b) != 0; }
friend constexpr bool operator<(const base_blob& a, const base_blob& b) { return a.Compare(b) < 0; }
std::string GetHex() const;
void SetHex(const char* psz);
void SetHex(const std::string& str);
std::string ToString() const;
constexpr const unsigned char* data() const { return m_data.data(); }
constexpr unsigned char* data() { return m_data.data(); }
constexpr unsigned char* begin() { return m_data.data(); }
constexpr unsigned char* end() { return m_data.data() + WIDTH; }
constexpr const unsigned char* begin() const { return m_data.data(); }
constexpr const unsigned char* end() const { return m_data.data() + WIDTH; }
static constexpr unsigned int size() { return WIDTH; }
constexpr uint64_t GetUint64(int pos) const { return ReadLE64(m_data.data() + pos * 8); }
template<typename Stream>
void Serialize(Stream& s) const
{
s << Span(m_data);
}
template<typename Stream>
void Unserialize(Stream& s)
{
s.read(MakeWritableByteSpan(m_data));
}
};
/** 160-bit opaque blob.
* @note This type is called uint160 for historical reasons only. It is an opaque
* blob of 160 bits and has no integer operations.
*/
class uint160 : public base_blob<160> {
public:
constexpr uint160() = default;
constexpr explicit uint160(Span<const unsigned char> vch) : base_blob<160>(vch) {}
};
/** 256-bit opaque blob.
* @note This type is called uint256 for historical reasons only. It is an
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
* those are required.
*/
class uint256 : public base_blob<256> {
public:
constexpr uint256() = default;
constexpr explicit uint256(uint8_t v) : base_blob<256>(v) {}
constexpr explicit uint256(Span<const unsigned char> vch) : base_blob<256>(vch) {}
static const uint256 ZERO;
static const uint256 ONE;
};
/* uint256 from const char *.
* This is a separate function because the constructor uint256(const char*) can result
* in dangerously catching uint256(0).
*/
inline uint256 uint256S(const char *str)
{
uint256 rv;
rv.SetHex(str);
return rv;
}
/* uint256 from std::string.
* This is a separate function because the constructor uint256(const std::string &str) can result
* in dangerously catching uint256(0) via std::string(const char*).
*/
inline uint256 uint256S(const std::string& str)
{
uint256 rv;
rv.SetHex(str);
return rv;
}
#endif // BITCOIN_UINT256_H