bitcoin/src/test/fuzz/txorphan.cpp
2025-02-20 14:00:21 -05:00

236 lines
11 KiB
C++

// Copyright (c) 2022-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/amount.h>
#include <consensus/validation.h>
#include <net_processing.h>
#include <node/eviction.h>
#include <policy/policy.h>
#include <primitives/transaction.h>
#include <script/script.h>
#include <sync.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/setup_common.h>
#include <txorphanage.h>
#include <uint256.h>
#include <util/check.h>
#include <util/time.h>
#include <cstdint>
#include <memory>
#include <set>
#include <utility>
#include <vector>
void initialize_orphanage()
{
static const auto testing_setup = MakeNoLogFileContext();
}
FUZZ_TARGET(txorphan, .init = initialize_orphanage)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
FastRandomContext orphanage_rng{/*fDeterministic=*/true};
SetMockTime(ConsumeTime(fuzzed_data_provider));
TxOrphanage orphanage;
std::vector<COutPoint> outpoints; // Duplicates are tolerated
outpoints.reserve(200'000);
// initial outpoints used to construct transactions later
for (uint8_t i = 0; i < 4; i++) {
outpoints.emplace_back(Txid::FromUint256(uint256{i}), 0);
}
CTransactionRef ptx_potential_parent = nullptr;
std::vector<CTransactionRef> tx_history;
LIMITED_WHILE(outpoints.size() < 200'000 && fuzzed_data_provider.ConsumeBool(), 10 * DEFAULT_MAX_ORPHAN_TRANSACTIONS)
{
// construct transaction
const CTransactionRef tx = [&] {
CMutableTransaction tx_mut;
const auto num_in = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(1, outpoints.size());
const auto num_out = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(1, 256);
// pick outpoints from outpoints as input. We allow input duplicates on purpose, given we are not
// running any transaction validation logic before adding transactions to the orphanage
tx_mut.vin.reserve(num_in);
for (uint32_t i = 0; i < num_in; i++) {
auto& prevout = PickValue(fuzzed_data_provider, outpoints);
// try making transactions unique by setting a random nSequence, but allow duplicate transactions if they happen
tx_mut.vin.emplace_back(prevout, CScript{}, fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(0, CTxIn::SEQUENCE_FINAL));
}
// output amount will not affect txorphanage
tx_mut.vout.reserve(num_out);
for (uint32_t i = 0; i < num_out; i++) {
tx_mut.vout.emplace_back(CAmount{0}, CScript{});
}
auto new_tx = MakeTransactionRef(tx_mut);
// add newly constructed outpoints to the coin pool
for (uint32_t i = 0; i < num_out; i++) {
outpoints.emplace_back(new_tx->GetHash(), i);
}
return new_tx;
}();
tx_history.push_back(tx);
const auto wtxid{tx->GetWitnessHash()};
// Trigger orphanage functions that are called using parents. ptx_potential_parent is a tx we constructed in a
// previous loop and potentially the parent of this tx.
if (ptx_potential_parent) {
// Set up future GetTxToReconsider call.
orphanage.AddChildrenToWorkSet(*ptx_potential_parent, orphanage_rng);
// Check that all txns returned from GetChildrenFrom* are indeed a direct child of this tx.
NodeId peer_id = fuzzed_data_provider.ConsumeIntegral<NodeId>();
for (const auto& child : orphanage.GetChildrenFromSamePeer(ptx_potential_parent, peer_id)) {
assert(std::any_of(child->vin.cbegin(), child->vin.cend(), [&](const auto& input) {
return input.prevout.hash == ptx_potential_parent->GetHash();
}));
}
}
// trigger orphanage functions
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10 * DEFAULT_MAX_ORPHAN_TRANSACTIONS)
{
NodeId peer_id = fuzzed_data_provider.ConsumeIntegral<NodeId>();
const auto total_bytes_start{orphanage.TotalOrphanUsage()};
const auto total_peer_bytes_start{orphanage.UsageByPeer(peer_id)};
const auto tx_weight{GetTransactionWeight(*tx)};
CallOneOf(
fuzzed_data_provider,
[&] {
{
CTransactionRef ref = orphanage.GetTxToReconsider(peer_id);
if (ref) {
Assert(orphanage.HaveTx(ref->GetWitnessHash()));
}
}
},
[&] {
bool have_tx = orphanage.HaveTx(tx->GetWitnessHash());
// AddTx should return false if tx is too big or already have it
// tx weight is unknown, we only check when tx is already in orphanage
{
bool add_tx = orphanage.AddTx(tx, peer_id);
// have_tx == true -> add_tx == false
Assert(!have_tx || !add_tx);
if (add_tx) {
Assert(orphanage.UsageByPeer(peer_id) == tx_weight + total_peer_bytes_start);
Assert(orphanage.TotalOrphanUsage() == tx_weight + total_bytes_start);
Assert(tx_weight <= MAX_STANDARD_TX_WEIGHT);
} else {
// Peer may have been added as an announcer.
if (orphanage.UsageByPeer(peer_id) == tx_weight + total_peer_bytes_start) {
Assert(orphanage.HaveTxFromPeer(wtxid, peer_id));
} else {
// Otherwise, there must not be any change to the peer byte count.
Assert(orphanage.UsageByPeer(peer_id) == total_peer_bytes_start);
}
// Regardless, total bytes should not have changed.
Assert(orphanage.TotalOrphanUsage() == total_bytes_start);
}
}
have_tx = orphanage.HaveTx(tx->GetWitnessHash());
{
bool add_tx = orphanage.AddTx(tx, peer_id);
// if have_tx is still false, it must be too big
Assert(!have_tx == (tx_weight > MAX_STANDARD_TX_WEIGHT));
Assert(!have_tx || !add_tx);
}
},
[&] {
bool have_tx = orphanage.HaveTx(tx->GetWitnessHash());
bool have_tx_and_peer = orphanage.HaveTxFromPeer(tx->GetWitnessHash(), peer_id);
// AddAnnouncer should return false if tx doesn't exist or we already HaveTxFromPeer.
{
bool added_announcer = orphanage.AddAnnouncer(tx->GetWitnessHash(), peer_id);
// have_tx == false -> added_announcer == false
Assert(have_tx || !added_announcer);
// have_tx_and_peer == true -> added_announcer == false
Assert(!have_tx_and_peer || !added_announcer);
// Total bytes should not have changed. If peer was added as announcer, byte
// accounting must have been updated.
Assert(orphanage.TotalOrphanUsage() == total_bytes_start);
if (added_announcer) {
Assert(orphanage.UsageByPeer(peer_id) == tx_weight + total_peer_bytes_start);
} else {
Assert(orphanage.UsageByPeer(peer_id) == total_peer_bytes_start);
}
}
},
[&] {
bool have_tx = orphanage.HaveTx(tx->GetWitnessHash());
bool have_tx_and_peer{orphanage.HaveTxFromPeer(wtxid, peer_id)};
// EraseTx should return 0 if m_orphans doesn't have the tx
{
auto bytes_from_peer_before{orphanage.UsageByPeer(peer_id)};
Assert(have_tx == orphanage.EraseTx(tx->GetWitnessHash()));
if (have_tx) {
Assert(orphanage.TotalOrphanUsage() == total_bytes_start - tx_weight);
if (have_tx_and_peer) {
Assert(orphanage.UsageByPeer(peer_id) == bytes_from_peer_before - tx_weight);
} else {
Assert(orphanage.UsageByPeer(peer_id) == bytes_from_peer_before);
}
} else {
Assert(orphanage.TotalOrphanUsage() == total_bytes_start);
}
}
have_tx = orphanage.HaveTx(tx->GetWitnessHash());
have_tx_and_peer = orphanage.HaveTxFromPeer(wtxid, peer_id);
// have_tx should be false and EraseTx should fail
{
Assert(!have_tx && !have_tx_and_peer && !orphanage.EraseTx(wtxid));
}
},
[&] {
orphanage.EraseForPeer(peer_id);
Assert(!orphanage.HaveTxFromPeer(tx->GetWitnessHash(), peer_id));
Assert(orphanage.UsageByPeer(peer_id) == 0);
},
[&] {
// Make a block out of txs and then EraseForBlock
CBlock block;
int num_txs = fuzzed_data_provider.ConsumeIntegralInRange<unsigned int>(0, 1000);
for (int i{0}; i < num_txs; ++i) {
auto& tx_to_remove = PickValue(fuzzed_data_provider, tx_history);
block.vtx.push_back(tx_to_remove);
}
orphanage.EraseForBlock(block);
for (const auto& tx_removed : block.vtx) {
Assert(!orphanage.HaveTx(tx_removed->GetWitnessHash()));
Assert(!orphanage.HaveTxFromPeer(tx_removed->GetWitnessHash(), peer_id));
}
},
[&] {
// test mocktime and expiry
SetMockTime(ConsumeTime(fuzzed_data_provider));
auto limit = fuzzed_data_provider.ConsumeIntegral<unsigned int>();
orphanage.LimitOrphans(limit, orphanage_rng);
Assert(orphanage.Size() <= limit);
});
}
// Set tx as potential parent to be used for future GetChildren() calls.
if (!ptx_potential_parent || fuzzed_data_provider.ConsumeBool()) {
ptx_potential_parent = tx;
}
const bool have_tx{orphanage.HaveTx(tx->GetWitnessHash())};
const bool get_tx_nonnull{orphanage.GetTx(tx->GetWitnessHash()) != nullptr};
Assert(have_tx == get_tx_nonnull);
}
orphanage.SanityCheck();
}