bitcoin/src/test/util/net.cpp
2025-03-13 02:06:36 +01:00

410 lines
13 KiB
C++

// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/util/net.h>
#include <net.h>
#include <net_processing.h>
#include <netaddress.h>
#include <netmessagemaker.h>
#include <node/connection_types.h>
#include <node/eviction.h>
#include <protocol.h>
#include <random.h>
#include <serialize.h>
#include <span.h>
#include <sync.h>
#include <chrono>
#include <optional>
#include <vector>
void ConnmanTestMsg::Handshake(CNode& node,
bool successfully_connected,
ServiceFlags remote_services,
ServiceFlags local_services,
int32_t version,
bool relay_txs)
{
auto& peerman{static_cast<PeerManager&>(*m_msgproc)};
auto& connman{*this};
peerman.InitializeNode(node, local_services);
peerman.SendMessages(&node);
FlushSendBuffer(node); // Drop the version message added by SendMessages.
CSerializedNetMsg msg_version{
NetMsg::Make(NetMsgType::VERSION,
version, //
Using<CustomUintFormatter<8>>(remote_services), //
int64_t{}, // dummy time
int64_t{}, // ignored service bits
CNetAddr::V1(CService{}), // dummy
int64_t{}, // ignored service bits
CNetAddr::V1(CService{}), // ignored
uint64_t{1}, // dummy nonce
std::string{}, // dummy subver
int32_t{}, // dummy starting_height
relay_txs),
};
(void)connman.ReceiveMsgFrom(node, std::move(msg_version));
node.fPauseSend = false;
connman.ProcessMessagesOnce(node);
peerman.SendMessages(&node);
FlushSendBuffer(node); // Drop the verack message added by SendMessages.
if (node.fDisconnect) return;
assert(node.nVersion == version);
assert(node.GetCommonVersion() == std::min(version, PROTOCOL_VERSION));
CNodeStateStats statestats;
assert(peerman.GetNodeStateStats(node.GetId(), statestats));
assert(statestats.m_relay_txs == (relay_txs && !node.IsBlockOnlyConn()));
assert(statestats.their_services == remote_services);
if (successfully_connected) {
CSerializedNetMsg msg_verack{NetMsg::Make(NetMsgType::VERACK)};
(void)connman.ReceiveMsgFrom(node, std::move(msg_verack));
node.fPauseSend = false;
connman.ProcessMessagesOnce(node);
peerman.SendMessages(&node);
assert(node.fSuccessfullyConnected == true);
}
}
void ConnmanTestMsg::NodeReceiveMsgBytes(CNode& node, Span<const uint8_t> msg_bytes, bool& complete)
{
assert(node.ReceiveMsgBytes(msg_bytes, complete, m_net_stats));
if (complete) {
node.MarkReceivedMsgsForProcessing();
}
}
void ConnmanTestMsg::FlushSendBuffer(CNode& node) const
{
LOCK(node.cs_vSend);
node.vSendMsg.clear();
node.m_send_memusage = 0;
while (true) {
const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend(false);
if (to_send.empty()) break;
node.m_transport->MarkBytesSent(to_send.size());
}
}
bool ConnmanTestMsg::ReceiveMsgFrom(CNode& node, CSerializedNetMsg&& ser_msg)
{
bool queued = node.m_transport->SetMessageToSend(ser_msg);
assert(queued);
bool complete{false};
while (true) {
const auto& [to_send, _more, _msg_type] = node.m_transport->GetBytesToSend(false);
if (to_send.empty()) break;
NodeReceiveMsgBytes(node, to_send, complete);
node.m_transport->MarkBytesSent(to_send.size());
}
return complete;
}
CNode* ConnmanTestMsg::ConnectNodePublic(PeerManager& peerman, const char* pszDest, ConnectionType conn_type)
{
CNode* node = ConnectNode(CAddress{}, pszDest, /*fCountFailure=*/false, conn_type, /*use_v2transport=*/true);
if (!node) return nullptr;
node->SetCommonVersion(PROTOCOL_VERSION);
peerman.InitializeNode(*node, ServiceFlags(NODE_NETWORK | NODE_WITNESS));
node->fSuccessfullyConnected = true;
AddTestNode(*node);
return node;
}
std::vector<NodeEvictionCandidate> GetRandomNodeEvictionCandidates(int n_candidates, FastRandomContext& random_context)
{
std::vector<NodeEvictionCandidate> candidates;
candidates.reserve(n_candidates);
for (int id = 0; id < n_candidates; ++id) {
candidates.push_back({
.id=id,
.m_connected=std::chrono::seconds{random_context.randrange(100)},
.m_min_ping_time=std::chrono::microseconds{random_context.randrange(100)},
.m_last_block_time=std::chrono::seconds{random_context.randrange(100)},
.m_last_tx_time=std::chrono::seconds{random_context.randrange(100)},
.fRelevantServices=random_context.randbool(),
.m_relay_txs=random_context.randbool(),
.fBloomFilter=random_context.randbool(),
.nKeyedNetGroup=random_context.randrange(100u),
.prefer_evict=random_context.randbool(),
.m_is_local=random_context.randbool(),
.m_network=ALL_NETWORKS[random_context.randrange(ALL_NETWORKS.size())],
.m_noban=false,
.m_conn_type=ConnectionType::INBOUND,
});
}
return candidates;
}
// Have different ZeroSock (or others that inherit from it) objects have different
// m_socket because EqualSharedPtrSock compares m_socket and we want to avoid two
// different objects comparing as equal.
static std::atomic<SOCKET> g_mocked_sock_fd{0};
ZeroSock::ZeroSock() : Sock{g_mocked_sock_fd++} {}
// Sock::~Sock() would try to close(2) m_socket if it is not INVALID_SOCKET, avoid that.
ZeroSock::~ZeroSock() { m_socket = INVALID_SOCKET; }
ssize_t ZeroSock::Send(const void*, size_t len, int) const { return len; }
ssize_t ZeroSock::Recv(void* buf, size_t len, int flags) const
{
memset(buf, 0x0, len);
return len;
}
int ZeroSock::Connect(const sockaddr*, socklen_t) const { return 0; }
int ZeroSock::Bind(const sockaddr*, socklen_t) const { return 0; }
int ZeroSock::Listen(int) const { return 0; }
std::unique_ptr<Sock> ZeroSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
if (addr != nullptr) {
// Pretend all connections come from 5.5.5.5:6789
memset(addr, 0x00, *addr_len);
const socklen_t write_len = static_cast<socklen_t>(sizeof(sockaddr_in));
if (*addr_len >= write_len) {
*addr_len = write_len;
sockaddr_in* addr_in = reinterpret_cast<sockaddr_in*>(addr);
addr_in->sin_family = AF_INET;
memset(&addr_in->sin_addr, 0x05, sizeof(addr_in->sin_addr));
addr_in->sin_port = htons(6789);
}
}
return std::make_unique<ZeroSock>();
}
int ZeroSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
std::memset(opt_val, 0x0, *opt_len);
return 0;
}
int ZeroSock::SetSockOpt(int, int, const void*, socklen_t) const { return 0; }
int ZeroSock::GetSockName(sockaddr* name, socklen_t* name_len) const
{
std::memset(name, 0x0, *name_len);
return 0;
}
bool ZeroSock::SetNonBlocking() const { return true; }
bool ZeroSock::IsSelectable() const { return true; }
bool ZeroSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
{
if (occurred != nullptr) {
*occurred = requested;
}
return true;
}
bool ZeroSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
{
for (auto& [sock, events] : events_per_sock) {
(void)sock;
events.occurred = events.requested;
}
return true;
}
ZeroSock& ZeroSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into ZeroSock not allowed.");
return *this;
}
StaticContentsSock::StaticContentsSock(const std::string& contents)
: m_contents{contents}
{
}
ssize_t StaticContentsSock::Recv(void* buf, size_t len, int flags) const
{
const size_t consume_bytes{std::min(len, m_contents.size() - m_consumed)};
std::memcpy(buf, m_contents.data() + m_consumed, consume_bytes);
if ((flags & MSG_PEEK) == 0) {
m_consumed += consume_bytes;
}
return consume_bytes;
}
StaticContentsSock& StaticContentsSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into StaticContentsSock not allowed.");
return *this;
}
ssize_t DynSock::Pipe::GetBytes(void* buf, size_t len, int flags)
{
WAIT_LOCK(m_mutex, lock);
if (m_data.empty()) {
if (m_eof) {
return 0;
}
errno = EAGAIN; // Same as recv(2) on a non-blocking socket.
return -1;
}
const size_t read_bytes{std::min(len, m_data.size())};
std::memcpy(buf, m_data.data(), read_bytes);
if ((flags & MSG_PEEK) == 0) {
m_data.erase(m_data.begin(), m_data.begin() + read_bytes);
}
return read_bytes;
}
std::optional<CNetMessage> DynSock::Pipe::GetNetMsg()
{
V1Transport transport{NodeId{0}};
{
WAIT_LOCK(m_mutex, lock);
WaitForDataOrEof(lock);
if (m_eof && m_data.empty()) {
return std::nullopt;
}
for (;;) {
Span<const uint8_t> s{m_data};
if (!transport.ReceivedBytes(s)) { // Consumed bytes are removed from the front of s.
return std::nullopt;
}
m_data.erase(m_data.begin(), m_data.begin() + m_data.size() - s.size());
if (transport.ReceivedMessageComplete()) {
break;
}
if (m_data.empty()) {
WaitForDataOrEof(lock);
if (m_eof && m_data.empty()) {
return std::nullopt;
}
}
}
}
bool reject{false};
CNetMessage msg{transport.GetReceivedMessage(/*time=*/{}, reject)};
if (reject) {
return std::nullopt;
}
return std::make_optional<CNetMessage>(std::move(msg));
}
void DynSock::Pipe::PushBytes(const void* buf, size_t len)
{
LOCK(m_mutex);
const uint8_t* b = static_cast<const uint8_t*>(buf);
m_data.insert(m_data.end(), b, b + len);
m_cond.notify_all();
}
void DynSock::Pipe::Eof()
{
LOCK(m_mutex);
m_eof = true;
m_cond.notify_all();
}
void DynSock::Pipe::WaitForDataOrEof(UniqueLock<Mutex>& lock)
{
Assert(lock.mutex() == &m_mutex);
m_cond.wait(lock, [&]() EXCLUSIVE_LOCKS_REQUIRED(m_mutex) {
AssertLockHeld(m_mutex);
return !m_data.empty() || m_eof;
});
}
DynSock::DynSock(std::shared_ptr<Pipes> pipes, std::shared_ptr<Queue> accept_sockets)
: m_pipes{pipes}, m_accept_sockets{accept_sockets}
{
}
DynSock::~DynSock()
{
m_pipes->send.Eof();
}
ssize_t DynSock::Recv(void* buf, size_t len, int flags) const
{
return m_pipes->recv.GetBytes(buf, len, flags);
}
ssize_t DynSock::Send(const void* buf, size_t len, int) const
{
m_pipes->send.PushBytes(buf, len);
return len;
}
std::unique_ptr<Sock> DynSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
ZeroSock::Accept(addr, addr_len);
return m_accept_sockets->Pop().value_or(nullptr);
}
bool DynSock::Wait(std::chrono::milliseconds timeout,
Event requested,
Event* occurred) const
{
EventsPerSock ev;
ev.emplace(this, Events{requested});
const bool ret{WaitMany(timeout, ev)};
if (occurred != nullptr) {
*occurred = ev.begin()->second.occurred;
}
return ret;
}
bool DynSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
{
const auto deadline = std::chrono::steady_clock::now() + timeout;
bool at_least_one_event_occurred{false};
for (;;) {
// Check all sockets for readiness without waiting.
for (auto& [sock, events] : events_per_sock) {
if ((events.requested & Sock::SEND) != 0) {
// Always ready for Send().
events.occurred |= Sock::SEND;
at_least_one_event_occurred = true;
}
if ((events.requested & Sock::RECV) != 0) {
auto dyn_sock = reinterpret_cast<const DynSock*>(sock.get());
uint8_t b;
if (dyn_sock->m_pipes->recv.GetBytes(&b, 1, MSG_PEEK) == 1 || !dyn_sock->m_accept_sockets->Empty()) {
events.occurred |= Sock::RECV;
at_least_one_event_occurred = true;
}
}
}
if (at_least_one_event_occurred || std::chrono::steady_clock::now() > deadline) {
break;
}
std::this_thread::sleep_for(10ms);
}
return true;
}
DynSock& DynSock::operator=(Sock&&)
{
assert(false && "Move of Sock into DynSock not allowed.");
return *this;
}