bitcoin/test/functional/feature_bip68_sequence.py
Hennadii Stepanov a0473442d1
scripted-diff: Add __file__ argument to BitcoinTestFramework.init()
-BEGIN VERIFY SCRIPT-
sed -i -e 's/\s*().main\s*()/(__file__).main()/' $(git ls-files test/functional/*.py)
sed -i -e 's/def __init__(self)/def __init__(self, test_file)/' test/functional/test_framework/test_framework.py
-END VERIFY SCRIPT-
2024-07-16 22:06:47 +01:00

416 lines
18 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2014-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test BIP68 implementation."""
import time
from test_framework.blocktools import (
NORMAL_GBT_REQUEST_PARAMS,
add_witness_commitment,
create_block,
script_to_p2wsh_script,
)
from test_framework.messages import (
COIN,
COutPoint,
CTransaction,
CTxIn,
CTxInWitness,
CTxOut,
tx_from_hex,
)
from test_framework.script import (
CScript,
OP_TRUE,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_greater_than,
assert_raises_rpc_error,
softfork_active,
)
from test_framework.wallet import MiniWallet
SCRIPT_W0_SH_OP_TRUE = script_to_p2wsh_script(CScript([OP_TRUE]))
SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31)
SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height)
SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift
SEQUENCE_LOCKTIME_MASK = 0x0000ffff
# RPC error for non-BIP68 final transactions
NOT_FINAL_ERROR = "non-BIP68-final"
class BIP68Test(BitcoinTestFramework):
def add_options(self, parser):
self.add_wallet_options(parser)
def set_test_params(self):
self.num_nodes = 2
self.extra_args = [
[
'-testactivationheight=csv@432',
],
[
'-testactivationheight=csv@432',
],
]
def run_test(self):
self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"]
self.wallet = MiniWallet(self.nodes[0])
self.log.info("Running test disable flag")
self.test_disable_flag()
self.log.info("Running test sequence-lock-confirmed-inputs")
self.test_sequence_lock_confirmed_inputs()
self.log.info("Running test sequence-lock-unconfirmed-inputs")
self.test_sequence_lock_unconfirmed_inputs()
self.log.info("Running test BIP68 not consensus before activation")
self.test_bip68_not_consensus()
self.log.info("Activating BIP68 (and 112/113)")
self.activateCSV()
self.log.info("Verifying version=2 transactions are standard.")
self.log.info("Note that version=2 transactions are always standard (independent of BIP68 activation status).")
self.test_version2_relay()
self.log.info("Passed")
# Test that BIP68 is not in effect if tx version is 1, or if
# the first sequence bit is set.
def test_disable_flag(self):
# Create some unconfirmed inputs
utxo = self.wallet.send_self_transfer(from_node=self.nodes[0])["new_utxo"]
tx1 = CTransaction()
value = int((utxo["value"] - self.relayfee) * COIN)
# Check that the disable flag disables relative locktime.
# If sequence locks were used, this would require 1 block for the
# input to mature.
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
tx1.vout = [CTxOut(value, SCRIPT_W0_SH_OP_TRUE)]
self.wallet.sign_tx(tx=tx1)
tx1_id = self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=tx1.serialize().hex())
tx1_id = int(tx1_id, 16)
# This transaction will enable sequence-locks, so this transaction should
# fail
tx2 = CTransaction()
tx2.version = 2
sequence_value = sequence_value & 0x7fffffff
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
tx2.wit.vtxinwit = [CTxInWitness()]
tx2.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
tx2.vout = [CTxOut(int(value - self.relayfee * COIN), SCRIPT_W0_SH_OP_TRUE)]
tx2.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.wallet.sendrawtransaction, from_node=self.nodes[0], tx_hex=tx2.serialize().hex())
# Setting the version back down to 1 should disable the sequence lock,
# so this should be accepted.
tx2.version = 1
self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=tx2.serialize().hex())
# Calculate the median time past of a prior block ("confirmations" before
# the current tip).
def get_median_time_past(self, confirmations):
block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations)
return self.nodes[0].getblockheader(block_hash)["mediantime"]
# Test that sequence locks are respected for transactions spending confirmed inputs.
def test_sequence_lock_confirmed_inputs(self):
# Create lots of confirmed utxos, and use them to generate lots of random
# transactions.
max_outputs = 50
while len(self.wallet.get_utxos(include_immature_coinbase=False, mark_as_spent=False)) < 200:
import random
num_outputs = random.randint(1, max_outputs)
self.wallet.send_self_transfer_multi(from_node=self.nodes[0], num_outputs=num_outputs)
self.generate(self.wallet, 1)
utxos = self.wallet.get_utxos(include_immature_coinbase=False)
# Try creating a lot of random transactions.
# Each time, choose a random number of inputs, and randomly set
# some of those inputs to be sequence locked (and randomly choose
# between height/time locking). Small random chance of making the locks
# all pass.
for _ in range(400):
# Randomly choose up to 10 inputs
num_inputs = random.randint(1, 10)
random.shuffle(utxos)
# Track whether any sequence locks used should fail
should_pass = True
# Track whether this transaction was built with sequence locks
using_sequence_locks = False
tx = CTransaction()
tx.version = 2
value = 0
for j in range(num_inputs):
sequence_value = 0xfffffffe # this disables sequence locks
# 50% chance we enable sequence locks
if random.randint(0,1):
using_sequence_locks = True
# 10% of the time, make the input sequence value pass
input_will_pass = (random.randint(1,10) == 1)
sequence_value = utxos[j]["confirmations"]
if not input_will_pass:
sequence_value += 1
should_pass = False
# Figure out what the median-time-past was for the confirmed input
# Note that if an input has N confirmations, we're going back N blocks
# from the tip so that we're looking up MTP of the block
# PRIOR to the one the input appears in, as per the BIP68 spec.
orig_time = self.get_median_time_past(utxos[j]["confirmations"])
cur_time = self.get_median_time_past(0) # MTP of the tip
# can only timelock this input if it's not too old -- otherwise use height
can_time_lock = True
if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK:
can_time_lock = False
# if time-lockable, then 50% chance we make this a time lock
if random.randint(0,1) and can_time_lock:
# Find first time-lock value that fails, or latest one that succeeds
time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY
if input_will_pass and time_delta > cur_time - orig_time:
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)
elif (not input_will_pass and time_delta <= cur_time - orig_time):
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value))
value += utxos[j]["value"]*COIN
# Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output
tx_size = len(tx.serialize().hex())//2 + 120*num_inputs + 50
tx.vout.append(CTxOut(int(value - self.relayfee * tx_size * COIN / 1000), SCRIPT_W0_SH_OP_TRUE))
self.wallet.sign_tx(tx=tx)
if (using_sequence_locks and not should_pass):
# This transaction should be rejected
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.wallet.sendrawtransaction, from_node=self.nodes[0], tx_hex=tx.serialize().hex())
else:
# This raw transaction should be accepted
self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=tx.serialize().hex())
self.wallet.rescan_utxos()
utxos = self.wallet.get_utxos(include_immature_coinbase=False)
# Test that sequence locks on unconfirmed inputs must have nSequence
# height or time of 0 to be accepted.
# Then test that BIP68-invalid transactions are removed from the mempool
# after a reorg.
def test_sequence_lock_unconfirmed_inputs(self):
# Store height so we can easily reset the chain at the end of the test
cur_height = self.nodes[0].getblockcount()
# Create a mempool tx.
self.wallet.rescan_utxos()
tx1 = self.wallet.send_self_transfer(from_node=self.nodes[0])["tx"]
tx1.rehash()
# Anyone-can-spend mempool tx.
# Sequence lock of 0 should pass.
tx2 = CTransaction()
tx2.version = 2
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee * COIN), SCRIPT_W0_SH_OP_TRUE)]
self.wallet.sign_tx(tx=tx2)
tx2_raw = tx2.serialize().hex()
tx2.rehash()
self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=tx2_raw)
# Create a spend of the 0th output of orig_tx with a sequence lock
# of 1, and test what happens when submitting.
# orig_tx.vout[0] must be an anyone-can-spend output
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
sequence_value = 1
if not use_height_lock:
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx = CTransaction()
tx.version = 2
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
tx.wit.vtxinwit = [CTxInWitness()]
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), SCRIPT_W0_SH_OP_TRUE)]
tx.rehash()
if (orig_tx.hash in node.getrawmempool()):
# sendrawtransaction should fail if the tx is in the mempool
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.wallet.sendrawtransaction, from_node=node, tx_hex=tx.serialize().hex())
else:
# sendrawtransaction should succeed if the tx is not in the mempool
self.wallet.sendrawtransaction(from_node=node, tx_hex=tx.serialize().hex())
return tx
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Now mine some blocks, but make sure tx2 doesn't get mined.
# Use prioritisetransaction to lower the effective feerate to 0
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN))
cur_time = int(time.time())
for _ in range(10):
self.nodes[0].setmocktime(cur_time + 600)
self.generate(self.wallet, 1, sync_fun=self.no_op)
cur_time += 600
assert tx2.hash in self.nodes[0].getrawmempool()
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Mine tx2, and then try again
self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN))
# Advance the time on the node so that we can test timelocks
self.nodes[0].setmocktime(cur_time+600)
# Save block template now to use for the reorg later
tmpl = self.nodes[0].getblocktemplate(NORMAL_GBT_REQUEST_PARAMS)
self.generate(self.nodes[0], 1)
assert tx2.hash not in self.nodes[0].getrawmempool()
# Now that tx2 is not in the mempool, a sequence locked spend should
# succeed
tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
assert tx3.hash in self.nodes[0].getrawmempool()
self.generate(self.nodes[0], 1)
assert tx3.hash not in self.nodes[0].getrawmempool()
# One more test, this time using height locks
tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
assert tx4.hash in self.nodes[0].getrawmempool()
# Now try combining confirmed and unconfirmed inputs
tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
assert tx5.hash not in self.nodes[0].getrawmempool()
utxo = self.wallet.get_utxo()
tx5.vin.append(CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=1))
tx5.vout[0].nValue += int(utxo["value"]*COIN)
self.wallet.sign_tx(tx=tx5)
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.wallet.sendrawtransaction, from_node=self.nodes[0], tx_hex=tx5.serialize().hex())
# Test mempool-BIP68 consistency after reorg
#
# State of the transactions in the last blocks:
# ... -> [ tx2 ] -> [ tx3 ]
# tip-1 tip
# And currently tx4 is in the mempool.
#
# If we invalidate the tip, tx3 should get added to the mempool, causing
# tx4 to be removed (fails sequence-lock).
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
assert tx4.hash not in self.nodes[0].getrawmempool()
assert tx3.hash in self.nodes[0].getrawmempool()
# Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
# diagram above).
# This would cause tx2 to be added back to the mempool, which in turn causes
# tx3 to be removed.
for i in range(2):
block = create_block(tmpl=tmpl, ntime=cur_time)
block.solve()
tip = block.sha256
assert_equal(None if i == 1 else 'inconclusive', self.nodes[0].submitblock(block.serialize().hex()))
tmpl = self.nodes[0].getblocktemplate(NORMAL_GBT_REQUEST_PARAMS)
tmpl['previousblockhash'] = '%x' % tip
tmpl['transactions'] = []
cur_time += 1
mempool = self.nodes[0].getrawmempool()
assert tx3.hash not in mempool
assert tx2.hash in mempool
# Reset the chain and get rid of the mocktimed-blocks
self.nodes[0].setmocktime(0)
self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1))
self.generate(self.wallet, 10, sync_fun=self.no_op)
# Make sure that BIP68 isn't being used to validate blocks prior to
# activation height. If more blocks are mined prior to this test
# being run, then it's possible the test has activated the soft fork, and
# this test should be moved to run earlier, or deleted.
def test_bip68_not_consensus(self):
assert not softfork_active(self.nodes[0], 'csv')
tx1 = self.wallet.send_self_transfer(from_node=self.nodes[0])["tx"]
tx1.rehash()
# Make an anyone-can-spend transaction
tx2 = CTransaction()
tx2.version = 1
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee * COIN), SCRIPT_W0_SH_OP_TRUE)]
# sign tx2
self.wallet.sign_tx(tx=tx2)
tx2_raw = tx2.serialize().hex()
tx2 = tx_from_hex(tx2_raw)
tx2.rehash()
self.wallet.sendrawtransaction(from_node=self.nodes[0], tx_hex=tx2_raw)
# Now make an invalid spend of tx2 according to BIP68
sequence_value = 100 # 100 block relative locktime
tx3 = CTransaction()
tx3.version = 2
tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
tx3.wit.vtxinwit = [CTxInWitness()]
tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), SCRIPT_W0_SH_OP_TRUE)]
tx3.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.wallet.sendrawtransaction, from_node=self.nodes[0], tx_hex=tx3.serialize().hex())
# make a block that violates bip68; ensure that the tip updates
block = create_block(tmpl=self.nodes[0].getblocktemplate(NORMAL_GBT_REQUEST_PARAMS), txlist=[tx1, tx2, tx3])
add_witness_commitment(block)
block.solve()
assert_equal(None, self.nodes[0].submitblock(block.serialize().hex()))
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
def activateCSV(self):
# activation should happen at block height 432 (3 periods)
# getblockchaininfo will show CSV as active at block 431 (144 * 3 -1) since it's returning whether CSV is active for the next block.
min_activation_height = 432
height = self.nodes[0].getblockcount()
assert_greater_than(min_activation_height - height, 2)
self.generate(self.wallet, min_activation_height - height - 2, sync_fun=self.no_op)
assert not softfork_active(self.nodes[0], 'csv')
self.generate(self.wallet, 1, sync_fun=self.no_op)
assert softfork_active(self.nodes[0], 'csv')
self.sync_blocks()
# Use self.nodes[1] to test that version 2 transactions are standard.
def test_version2_relay(self):
mini_wallet = MiniWallet(self.nodes[1])
mini_wallet.send_self_transfer(from_node=self.nodes[1], version=2)
if __name__ == '__main__':
BIP68Test(__file__).main()