411c6cfc6c
Before this commit, we would always prepare tracepoint arguments regardless of the tracepoint being used or not. While we already made sure not to include expensive arguments in our tracepoints, this commit introduces gating to make sure the arguments are only prepared if the tracepoints are actually used. This is a win-win improvement to our tracing framework. For users not interested in tracing, the overhead is reduced to a cheap 'greater than 0' compare. As the semaphore-gating technique used here is available in bpftrace, bcc, and libbpf, users interested in tracing don't have to change their tracing scripts while profiting from potential future tracepoints passing slightly more expensive arguments. An example are mempool tracepoints that pass serialized transactions. We've avoided the serialization in the past as it was too expensive. Under the hood, the semaphore-gating works by placing a 2-byte semaphore in the '.probes' ELF section. The address of the semaphore is contained in the ELF note providing the tracepoint information (`readelf -n ./src/bitcoind | grep NT_STAPSDT`). Tracing toolkits like bpftrace, bcc, and libbpf increase the semaphore at the address upon attaching to the tracepoint. We only prepare the arguments and reach the tracepoint if the semaphore is greater than zero. The semaphore is decreased when detaching from the tracepoint. This also extends the "Adding a new tracepoint" documentation to include information about the semaphores and updated step-by-step instructions on how to add a new tracepoint. |
||
---|---|---|
.github | ||
.tx | ||
ci | ||
cmake | ||
contrib | ||
depends | ||
doc | ||
share | ||
src | ||
test | ||
.cirrus.yml | ||
.editorconfig | ||
.gitattributes | ||
.gitignore | ||
.python-version | ||
.style.yapf | ||
CMakeLists.txt | ||
CMakePresets.json | ||
CONTRIBUTING.md | ||
COPYING | ||
INSTALL.md | ||
libbitcoinkernel.pc.in | ||
README.md | ||
SECURITY.md | ||
vcpkg.json |
Bitcoin Core integration/staging tree
For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.
What is Bitcoin Core?
Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.
Further information about Bitcoin Core is available in the doc folder.
License
Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master
branch is regularly built (see doc/build-*.md
for instructions) and tested, but it is not guaranteed to be
completely stable. Tags are created
regularly from release branches to indicate new official, stable release versions of Bitcoin Core.
The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.
The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled during the generation of the build system) with: ctest
. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests, written
in Python.
These tests can be run (if the test dependencies are installed) with: build/test/functional/test_runner.py
(assuming build
is your build directory).
The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.