bitcoin/test/functional/mining_prioritisetransaction.py

268 lines
13 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2015-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the prioritisetransaction mining RPC."""
from decimal import Decimal
import time
from test_framework.messages import (
COIN,
MAX_BLOCK_WEIGHT,
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_raises_rpc_error,
create_lots_of_big_transactions,
gen_return_txouts,
)
from test_framework.wallet import MiniWallet
class PrioritiseTransactionTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 1
self.extra_args = [[
"-printpriority=1",
"-datacarriersize=100000",
]] * self.num_nodes
self.supports_cli = False
def test_diamond(self):
self.log.info("Test diamond-shape package with priority")
mock_time = int(time.time())
self.nodes[0].setmocktime(mock_time)
# tx_a
# / \
# / \
# tx_b tx_c
# \ /
# \ /
# tx_d
tx_o_a = self.wallet.send_self_transfer_multi(
from_node=self.nodes[0],
num_outputs=2,
)
txid_a = tx_o_a["txid"]
tx_o_b, tx_o_c = [self.wallet.send_self_transfer(
from_node=self.nodes[0],
utxo_to_spend=u,
) for u in tx_o_a["new_utxos"]]
txid_b = tx_o_b["txid"]
txid_c = tx_o_c["txid"]
tx_o_d = self.wallet.send_self_transfer_multi(
from_node=self.nodes[0],
utxos_to_spend=[
self.wallet.get_utxo(txid=txid_b),
self.wallet.get_utxo(txid=txid_c),
],
)
txid_d = tx_o_d["txid"]
self.log.info("Test priority while txs are in mempool")
raw_before = self.nodes[0].getrawmempool(verbose=True)
fee_delta_b = Decimal(9999) / COIN
fee_delta_c_1 = Decimal(-1234) / COIN
fee_delta_c_2 = Decimal(8888) / COIN
self.nodes[0].prioritisetransaction(txid=txid_b, fee_delta=int(fee_delta_b * COIN))
self.nodes[0].prioritisetransaction(txid=txid_c, fee_delta=int(fee_delta_c_1 * COIN))
self.nodes[0].prioritisetransaction(txid=txid_c, fee_delta=int(fee_delta_c_2 * COIN))
raw_before[txid_a]["fees"]["descendant"] += fee_delta_b + fee_delta_c_1 + fee_delta_c_2
raw_before[txid_b]["fees"]["modified"] += fee_delta_b
raw_before[txid_b]["fees"]["ancestor"] += fee_delta_b
raw_before[txid_b]["fees"]["descendant"] += fee_delta_b
raw_before[txid_c]["fees"]["modified"] += fee_delta_c_1 + fee_delta_c_2
raw_before[txid_c]["fees"]["ancestor"] += fee_delta_c_1 + fee_delta_c_2
raw_before[txid_c]["fees"]["descendant"] += fee_delta_c_1 + fee_delta_c_2
raw_before[txid_d]["fees"]["ancestor"] += fee_delta_b + fee_delta_c_1 + fee_delta_c_2
raw_after = self.nodes[0].getrawmempool(verbose=True)
assert_equal(raw_before[txid_a], raw_after[txid_a])
assert_equal(raw_before, raw_after)
prioritisation_map_in_mempool = self.nodes[0].getprioritisedtransactions()
assert_equal(prioritisation_map_in_mempool[txid_b], {"fee_delta" : fee_delta_b*COIN, "in_mempool" : True})
assert_equal(prioritisation_map_in_mempool[txid_c], {"fee_delta" : (fee_delta_c_1 + fee_delta_c_2)*COIN, "in_mempool" : True})
self.log.info("Test priority while txs are not in mempool")
self.restart_node(0, extra_args=["-nopersistmempool"])
self.nodes[0].setmocktime(mock_time)
assert_equal(self.nodes[0].getmempoolinfo()["size"], 0)
self.nodes[0].prioritisetransaction(txid=txid_b, fee_delta=int(fee_delta_b * COIN))
self.nodes[0].prioritisetransaction(txid=txid_c, fee_delta=int(fee_delta_c_1 * COIN))
self.nodes[0].prioritisetransaction(txid=txid_c, fee_delta=int(fee_delta_c_2 * COIN))
prioritisation_map_not_in_mempool = self.nodes[0].getprioritisedtransactions()
assert_equal(prioritisation_map_not_in_mempool[txid_b], {"fee_delta" : fee_delta_b*COIN, "in_mempool" : False})
assert_equal(prioritisation_map_not_in_mempool[txid_c], {"fee_delta" : (fee_delta_c_1 + fee_delta_c_2)*COIN, "in_mempool" : False})
for t in [tx_o_a["hex"], tx_o_b["hex"], tx_o_c["hex"], tx_o_d["hex"]]:
self.nodes[0].sendrawtransaction(t)
raw_after = self.nodes[0].getrawmempool(verbose=True)
assert_equal(raw_before[txid_a], raw_after[txid_a])
assert_equal(raw_before, raw_after)
prioritisation_map_in_mempool = self.nodes[0].getprioritisedtransactions()
assert_equal(prioritisation_map_in_mempool[txid_b], {"fee_delta" : fee_delta_b*COIN, "in_mempool" : True})
assert_equal(prioritisation_map_in_mempool[txid_c], {"fee_delta" : (fee_delta_c_1 + fee_delta_c_2)*COIN, "in_mempool" : True})
# Clear mempool
self.generate(self.nodes[0], 1)
# Prioritisation for transactions is automatically deleted after they are mined.
assert_equal(self.nodes[0].getprioritisedtransactions(), {})
# Use default extra_args
self.restart_node(0)
def run_test(self):
self.wallet = MiniWallet(self.nodes[0])
# Test `prioritisetransaction` required parameters
assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction)
assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '')
assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0)
# Test `prioritisetransaction` invalid extra parameters
assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0, 0, 0)
# Test `getprioritisedtransactions` invalid parameters
assert_raises_rpc_error(-1, "getprioritisedtransactions",
self.nodes[0].getprioritisedtransactions, True)
# Test `prioritisetransaction` invalid `txid`
assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].prioritisetransaction, txid='foo', fee_delta=0)
assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'Zd1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000')", self.nodes[0].prioritisetransaction, txid='Zd1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000', fee_delta=0)
# Test `prioritisetransaction` invalid `dummy`
txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type number", self.nodes[0].prioritisetransaction, txid, 'foo', 0)
assert_raises_rpc_error(-8, "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.", self.nodes[0].prioritisetransaction, txid, 1, 0)
# Test `prioritisetransaction` invalid `fee_delta`
assert_raises_rpc_error(-3, "JSON value of type string is not of expected type number", self.nodes[0].prioritisetransaction, txid=txid, fee_delta='foo')
self.test_diamond()
self.txouts = gen_return_txouts()
self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']
utxo_count = 90
utxos = self.wallet.send_self_transfer_multi(from_node=self.nodes[0], num_outputs=utxo_count)['new_utxos']
self.generate(self.wallet, 1)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
base_fee = self.relayfee*100 # our transactions are smaller than 100kb
txids = []
# Create 3 batches of transactions at 3 different fee rate levels
range_size = utxo_count // 3
for i in range(3):
txids.append([])
start_range = i * range_size
end_range = start_range + range_size
txids[i] = create_lots_of_big_transactions(
self.wallet,
self.nodes[0],
(i+1) * base_fee,
end_range - start_range,
self.txouts,
utxos[start_range:end_range])
# Make sure that the size of each group of transactions exceeds
# MAX_BLOCK_WEIGHT // 4 -- otherwise the test needs to be revised to
# create more transactions.
mempool = self.nodes[0].getrawmempool(True)
sizes = [0, 0, 0]
for i in range(3):
for j in txids[i]:
assert j in mempool
sizes[i] += mempool[j]['vsize']
assert sizes[i] > MAX_BLOCK_WEIGHT // 4 # Fail => raise utxo_count
# add a fee delta to something in the cheapest bucket and make sure it gets mined
# also check that a different entry in the cheapest bucket is NOT mined
self.nodes[0].prioritisetransaction(txid=txids[0][0], fee_delta=int(3*base_fee*COIN))
assert_equal(self.nodes[0].getprioritisedtransactions()[txids[0][0]], { "fee_delta" : 3*base_fee*COIN, "in_mempool" : True})
self.generate(self.nodes[0], 1)
mempool = self.nodes[0].getrawmempool()
self.log.info("Assert that prioritised transaction was mined")
assert txids[0][0] not in mempool
assert txids[0][1] in mempool
high_fee_tx = None
for x in txids[2]:
if x not in mempool:
high_fee_tx = x
# Something high-fee should have been mined!
assert high_fee_tx is not None
# Add a prioritisation before a tx is in the mempool (de-prioritising a
# high-fee transaction so that it's now low fee).
self.nodes[0].prioritisetransaction(txid=high_fee_tx, fee_delta=-int(2*base_fee*COIN))
assert_equal(self.nodes[0].getprioritisedtransactions()[high_fee_tx], { "fee_delta" : -2*base_fee*COIN, "in_mempool" : False})
# Add everything back to mempool
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
# Check to make sure our high fee rate tx is back in the mempool
mempool = self.nodes[0].getrawmempool()
assert high_fee_tx in mempool
# Now verify the modified-high feerate transaction isn't mined before
# the other high fee transactions. Keep mining until our mempool has
# decreased by all the high fee size that we calculated above.
while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
self.generate(self.nodes[0], 1, sync_fun=self.no_op)
# High fee transaction should not have been mined, but other high fee rate
# transactions should have been.
mempool = self.nodes[0].getrawmempool()
self.log.info("Assert that de-prioritised transaction is still in mempool")
assert high_fee_tx in mempool
assert_equal(self.nodes[0].getprioritisedtransactions()[high_fee_tx], { "fee_delta" : -2*base_fee*COIN, "in_mempool" : True})
for x in txids[2]:
if (x != high_fee_tx):
assert x not in mempool
# Create a free transaction. Should be rejected.
tx_res = self.wallet.create_self_transfer(fee_rate=0)
tx_hex = tx_res['hex']
tx_id = tx_res['txid']
# This will raise an exception due to min relay fee not being met
assert_raises_rpc_error(-26, "min relay fee not met", self.nodes[0].sendrawtransaction, tx_hex)
assert tx_id not in self.nodes[0].getrawmempool()
# This is a less than 1000-byte transaction, so just set the fee
# to be the minimum for a 1000-byte transaction and check that it is
# accepted.
self.nodes[0].prioritisetransaction(txid=tx_id, fee_delta=int(self.relayfee*COIN))
assert_equal(self.nodes[0].getprioritisedtransactions()[tx_id], { "fee_delta" : self.relayfee*COIN, "in_mempool" : False})
self.log.info("Assert that prioritised free transaction is accepted to mempool")
assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id)
assert tx_id in self.nodes[0].getrawmempool()
assert_equal(self.nodes[0].getprioritisedtransactions()[tx_id], { "fee_delta" : self.relayfee*COIN, "in_mempool" : True})
# Test that calling prioritisetransaction is sufficient to trigger
# getblocktemplate to (eventually) return a new block.
mock_time = int(time.time())
self.nodes[0].setmocktime(mock_time)
template = self.nodes[0].getblocktemplate({'rules': ['segwit']})
self.nodes[0].prioritisetransaction(txid=tx_id, fee_delta=-int(self.relayfee*COIN))
assert tx_id in self.nodes[0].getprioritisedtransactions()
assert_equal(self.nodes[0].getprioritisedtransactions()[tx_id]["fee_delta"], 0)
self.nodes[0].setmocktime(mock_time+10)
new_template = self.nodes[0].getblocktemplate({'rules': ['segwit']})
assert template != new_template
if __name__ == '__main__':
PrioritiseTransactionTest().main()