Move BlockManager to node/blockstorage

Can be reviewed with --color-moved=dimmed-zebra
This commit is contained in:
MarcoFalke 2022-01-02 17:05:43 +01:00
parent 8b5a4de904
commit fade2a44f4
No known key found for this signature in database
GPG Key ID: CE2B75697E69A548
4 changed files with 454 additions and 453 deletions

View File

@ -12,6 +12,7 @@
#include <fs.h>
#include <hash.h>
#include <pow.h>
#include <reverse_iterator.h>
#include <shutdown.h>
#include <signet.h>
#include <streams.h>
@ -47,6 +48,374 @@ static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly = false);
static FlatFileSeq BlockFileSeq();
static FlatFileSeq UndoFileSeq();
CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const
{
AssertLockHeld(cs_main);
BlockMap::const_iterator it = m_block_index.find(hash);
return it == m_block_index.end() ? nullptr : it->second;
}
CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = m_block_index.find(hash);
if (it != m_block_index.end())
return it->second;
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock);
if (miPrev != m_block_index.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
void BlockManager::PruneOneBlockFile(const int fileNumber)
{
AssertLockHeld(cs_main);
LOCK(cs_LastBlockFile);
for (const auto& entry : m_block_index) {
CBlockIndex* pindex = entry.second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from m_blocks_unlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// m_blocks_unlinked or setBlockIndexCandidates.
auto range = m_blocks_unlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it = range.first;
range.first++;
if (_it->second == pindex) {
m_blocks_unlinked.erase(_it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void BlockManager::FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height)
{
assert(fPruneMode && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0) {
return;
}
// last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip)
unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chain_tip_height - MIN_BLOCKS_TO_KEEP);
int count = 0;
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
if (vinfoBlockFile[fileNumber].nSize == 0 || vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count);
}
void BlockManager::FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0 || nPruneTarget == 0) {
return;
}
if ((uint64_t)chain_tip_height <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune{(unsigned)std::min(prune_height, chain_tip_height - static_cast<int>(MIN_BLOCKS_TO_KEEP))};
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count = 0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
// On a prune event, the chainstate DB is flushed.
// To avoid excessive prune events negating the benefit of high dbcache
// values, we should not prune too rapidly.
// So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon.
if (is_ibd) {
// Since this is only relevant during IBD, we use a fixed 10%
nBuffer += nPruneTarget / 10;
}
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0) {
continue;
}
if (nCurrentUsage + nBuffer < nPruneTarget) { // are we below our target?
break;
}
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
CBlockIndex * BlockManager::InsertBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
if (hash.IsNull())
return nullptr;
// Return existing
BlockMap::iterator mi = m_block_index.find(hash);
if (mi != m_block_index.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool BlockManager::LoadBlockIndex(
const Consensus::Params& consensus_params,
ChainstateManager& chainman)
{
if (!m_block_tree_db->LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) {
return false;
}
// Calculate nChainWork
std::vector<std::pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(m_block_index.size());
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
// Find start of assumed-valid region.
int first_assumed_valid_height = std::numeric_limits<int>::max();
for (const auto& [height, block] : vSortedByHeight) {
if (block->IsAssumedValid()) {
auto chainstates = chainman.GetAll();
// If we encounter an assumed-valid block index entry, ensure that we have
// one chainstate that tolerates assumed-valid entries and another that does
// not (i.e. the background validation chainstate), since assumed-valid
// entries should always be pending validation by a fully-validated chainstate.
auto any_chain = [&](auto fnc) { return std::any_of(chainstates.cbegin(), chainstates.cend(), fnc); };
assert(any_chain([](auto chainstate) { return chainstate->reliesOnAssumedValid(); }));
assert(any_chain([](auto chainstate) { return !chainstate->reliesOnAssumedValid(); }));
first_assumed_valid_height = height;
break;
}
}
for (const std::pair<int, CBlockIndex*>& item : vSortedByHeight)
{
if (ShutdownRequested()) return false;
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);
// We can link the chain of blocks for which we've received transactions at some point, or
// blocks that are assumed-valid on the basis of snapshot load (see
// PopulateAndValidateSnapshot()).
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx > 0) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
pindex->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindex);
}
if (pindex->IsAssumedValid() ||
(pindex->IsValid(BLOCK_VALID_TRANSACTIONS) &&
(pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))) {
// Fill each chainstate's block candidate set. Only add assumed-valid
// blocks to the tip candidate set if the chainstate is allowed to rely on
// assumed-valid blocks.
//
// If all setBlockIndexCandidates contained the assumed-valid blocks, the
// background chainstate's ActivateBestChain() call would add assumed-valid
// blocks to the chain (based on how FindMostWorkChain() works). Obviously
// we don't want this since the purpose of the background validation chain
// is to validate assued-valid blocks.
//
// Note: This is considering all blocks whose height is greater or equal to
// the first assumed-valid block to be assumed-valid blocks, and excluding
// them from the background chainstate's setBlockIndexCandidates set. This
// does mean that some blocks which are not technically assumed-valid
// (later blocks on a fork beginning before the first assumed-valid block)
// might not get added to the the background chainstate, but this is ok,
// because they will still be attached to the active chainstate if they
// actually contain more work.
//
// Instad of this height-based approach, an earlier attempt was made at
// detecting "holistically" whether the block index under consideration
// relied on an assumed-valid ancestor, but this proved to be too slow to
// be practical.
for (CChainState* chainstate : chainman.GetAll()) {
if (chainstate->reliesOnAssumedValid() ||
pindex->nHeight < first_assumed_valid_height) {
chainstate->setBlockIndexCandidates.insert(pindex);
}
}
}
if (pindex->nStatus & BLOCK_FAILED_MASK && (!chainman.m_best_invalid || pindex->nChainWork > chainman.m_best_invalid->nChainWork)) {
chainman.m_best_invalid = pindex;
}
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
return true;
}
void BlockManager::Unload() {
m_blocks_unlinked.clear();
for (const BlockMap::value_type& entry : m_block_index) {
delete entry.second;
}
m_block_index.clear();
}
bool BlockManager::LoadBlockIndexDB(ChainstateManager& chainman)
{
if (!LoadBlockIndex(::Params().GetConsensus(), chainman)) {
return false;
}
// Load block file info
m_block_tree_db->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
m_block_tree_db->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
std::set<int> setBlkDataFiles;
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
FlatFilePos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
m_block_tree_db->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
m_block_tree_db->ReadReindexing(fReindexing);
if(fReindexing) fReindex = true;
return true;
}
CBlockIndex* BlockManager::GetLastCheckpoint(const CCheckpointData& data)
{
const MapCheckpoints& checkpoints = data.mapCheckpoints;
for (const MapCheckpoints::value_type& i : reverse_iterate(checkpoints))
{
const uint256& hash = i.second;
CBlockIndex* pindex = LookupBlockIndex(hash);
if (pindex) {
return pindex;
}
}
return nullptr;
}
bool IsBlockPruned(const CBlockIndex* pblockindex)
{
return (fHavePruned && !(pblockindex->nStatus & BLOCK_HAVE_DATA) && pblockindex->nTx > 0);

View File

@ -7,6 +7,7 @@
#include <fs.h>
#include <protocol.h> // For CMessageHeader::MessageStartChars
#include <txdb.h>
#include <atomic>
#include <cstdint>
@ -20,7 +21,9 @@ class CBlockIndex;
class CBlockUndo;
class CChain;
class CChainParams;
class CChainState;
class ChainstateManager;
struct CCheckpointData;
struct FlatFilePos;
namespace Consensus {
struct Params;
@ -45,6 +48,87 @@ extern bool fPruneMode;
/** Number of MiB of block files that we're trying to stay below. */
extern uint64_t nPruneTarget;
typedef std::unordered_map<uint256, CBlockIndex*, BlockHasher> BlockMap;
struct CBlockIndexWorkComparator
{
bool operator()(const CBlockIndex *pa, const CBlockIndex *pb) const;
};
/**
* Maintains a tree of blocks (stored in `m_block_index`) which is consulted
* to determine where the most-work tip is.
*
* This data is used mostly in `CChainState` - information about, e.g.,
* candidate tips is not maintained here.
*/
class BlockManager
{
friend CChainState;
private:
/* Calculate the block/rev files to delete based on height specified by user with RPC command pruneblockchain */
void FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height);
/**
* Prune block and undo files (blk???.dat and rev???.dat) so that the disk space used is less than a user-defined target.
* The user sets the target (in MB) on the command line or in config file. This will be run on startup and whenever new
* space is allocated in a block or undo file, staying below the target. Changing back to unpruned requires a reindex
* (which in this case means the blockchain must be re-downloaded.)
*
* Pruning functions are called from FlushStateToDisk when the global fCheckForPruning flag has been set.
* Block and undo files are deleted in lock-step (when blk00003.dat is deleted, so is rev00003.dat.)
* Pruning cannot take place until the longest chain is at least a certain length (100000 on mainnet, 1000 on testnet, 1000 on regtest).
* Pruning will never delete a block within a defined distance (currently 288) from the active chain's tip.
* The block index is updated by unsetting HAVE_DATA and HAVE_UNDO for any blocks that were stored in the deleted files.
* A db flag records the fact that at least some block files have been pruned.
*
* @param[out] setFilesToPrune The set of file indices that can be unlinked will be returned
*/
void FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd);
public:
BlockMap m_block_index GUARDED_BY(cs_main);
/**
* All pairs A->B, where A (or one of its ancestors) misses transactions, but B has transactions.
* Pruned nodes may have entries where B is missing data.
*/
std::multimap<CBlockIndex*, CBlockIndex*> m_blocks_unlinked;
std::unique_ptr<CBlockTreeDB> m_block_tree_db GUARDED_BY(::cs_main);
bool LoadBlockIndexDB(ChainstateManager& chainman) EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
/**
* Load the blocktree off disk and into memory. Populate certain metadata
* per index entry (nStatus, nChainWork, nTimeMax, etc.) as well as peripheral
* collections like setDirtyBlockIndex.
*/
bool LoadBlockIndex(
const Consensus::Params& consensus_params,
ChainstateManager& chainman) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/** Clear all data members. */
void Unload() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
CBlockIndex* AddToBlockIndex(const CBlockHeader& block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/** Create a new block index entry for a given block hash */
CBlockIndex* InsertBlockIndex(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
//! Mark one block file as pruned (modify associated database entries)
void PruneOneBlockFile(const int fileNumber) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
CBlockIndex* LookupBlockIndex(const uint256& hash) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
//! Returns last CBlockIndex* that is a checkpoint
CBlockIndex* GetLastCheckpoint(const CCheckpointData& data) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
~BlockManager() {
Unload();
}
};
//! Check whether the block associated with this index entry is pruned or not.
bool IsBlockPruned(const CBlockIndex* pblockindex);

View File

@ -143,13 +143,6 @@ extern std::set<int> setDirtyFileInfo;
void FlushBlockFile(bool fFinalize = false, bool finalize_undo = false);
// ... TODO move fully to blockstorage
CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const
{
AssertLockHeld(cs_main);
BlockMap::const_iterator it = m_block_index.find(hash);
return it == m_block_index.end() ? nullptr : it->second;
}
CBlockIndex* CChainState::FindForkInGlobalIndex(const CBlockLocator& locator) const
{
AssertLockHeld(cs_main);
@ -3123,42 +3116,6 @@ void CChainState::ResetBlockFailureFlags(CBlockIndex *pindex) {
}
}
CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = m_block_index.find(hash);
if (it != m_block_index.end())
return it->second;
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(block);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock);
if (miPrev != m_block_index.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to BLOCK_VALID_TRANSACTIONS). */
void CChainState::ReceivedBlockTransactions(const CBlock& block, CBlockIndex* pindexNew, const FlatFilePos& pos)
{
@ -3325,21 +3282,6 @@ std::vector<unsigned char> GenerateCoinbaseCommitment(CBlock& block, const CBloc
return commitment;
}
CBlockIndex* BlockManager::GetLastCheckpoint(const CCheckpointData& data)
{
const MapCheckpoints& checkpoints = data.mapCheckpoints;
for (const MapCheckpoints::value_type& i : reverse_iterate(checkpoints))
{
const uint256& hash = i.second;
CBlockIndex* pindex = LookupBlockIndex(hash);
if (pindex) {
return pindex;
}
}
return nullptr;
}
/** Context-dependent validity checks.
* By "context", we mean only the previous block headers, but not the UTXO
* set; UTXO-related validity checks are done in ConnectBlock().
@ -3761,67 +3703,6 @@ bool TestBlockValidity(BlockValidationState& state,
return true;
}
/**
* BLOCK PRUNING CODE
*/
void BlockManager::PruneOneBlockFile(const int fileNumber)
{
AssertLockHeld(cs_main);
LOCK(cs_LastBlockFile);
for (const auto& entry : m_block_index) {
CBlockIndex* pindex = entry.second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from m_blocks_unlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// m_blocks_unlinked or setBlockIndexCandidates.
auto range = m_blocks_unlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it = range.first;
range.first++;
if (_it->second == pindex) {
m_blocks_unlinked.erase(_it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void BlockManager::FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height)
{
assert(fPruneMode && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0) {
return;
}
// last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip)
unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chain_tip_height - MIN_BLOCKS_TO_KEEP);
int count = 0;
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
if (vinfoBlockFile[fileNumber].nSize == 0 || vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count);
}
/* This function is called from the RPC code for pruneblockchain */
void PruneBlockFilesManual(CChainState& active_chainstate, int nManualPruneHeight)
{
@ -3832,259 +3713,6 @@ void PruneBlockFilesManual(CChainState& active_chainstate, int nManualPruneHeigh
}
}
void BlockManager::FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd)
{
LOCK2(cs_main, cs_LastBlockFile);
if (chain_tip_height < 0 || nPruneTarget == 0) {
return;
}
if ((uint64_t)chain_tip_height <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune{(unsigned)std::min(prune_height, chain_tip_height - static_cast<int>(MIN_BLOCKS_TO_KEEP))};
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files
// So we should leave a buffer under our target to account for another allocation
// before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count = 0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
// On a prune event, the chainstate DB is flushed.
// To avoid excessive prune events negating the benefit of high dbcache
// values, we should not prune too rapidly.
// So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon.
if (is_ibd) {
// Since this is only relevant during IBD, we use a fixed 10%
nBuffer += nPruneTarget / 10;
}
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0) {
continue;
}
if (nCurrentUsage + nBuffer < nPruneTarget) { // are we below our target?
break;
}
// don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
continue;
}
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
nLastBlockWeCanPrune, count);
}
CBlockIndex * BlockManager::InsertBlockIndex(const uint256& hash)
{
AssertLockHeld(cs_main);
if (hash.IsNull())
return nullptr;
// Return existing
BlockMap::iterator mi = m_block_index.find(hash);
if (mi != m_block_index.end())
return (*mi).second;
// Create new
CBlockIndex* pindexNew = new CBlockIndex();
mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool BlockManager::LoadBlockIndex(
const Consensus::Params& consensus_params,
ChainstateManager& chainman)
{
if (!m_block_tree_db->LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) {
return false;
}
// Calculate nChainWork
std::vector<std::pair<int, CBlockIndex*> > vSortedByHeight;
vSortedByHeight.reserve(m_block_index.size());
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index)
{
CBlockIndex* pindex = item.second;
vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
// Find start of assumed-valid region.
int first_assumed_valid_height = std::numeric_limits<int>::max();
for (const auto& [height, block] : vSortedByHeight) {
if (block->IsAssumedValid()) {
auto chainstates = chainman.GetAll();
// If we encounter an assumed-valid block index entry, ensure that we have
// one chainstate that tolerates assumed-valid entries and another that does
// not (i.e. the background validation chainstate), since assumed-valid
// entries should always be pending validation by a fully-validated chainstate.
auto any_chain = [&](auto fnc) { return std::any_of(chainstates.cbegin(), chainstates.cend(), fnc); };
assert(any_chain([](auto chainstate) { return chainstate->reliesOnAssumedValid(); }));
assert(any_chain([](auto chainstate) { return !chainstate->reliesOnAssumedValid(); }));
first_assumed_valid_height = height;
break;
}
}
for (const std::pair<int, CBlockIndex*>& item : vSortedByHeight)
{
if (ShutdownRequested()) return false;
CBlockIndex* pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);
// We can link the chain of blocks for which we've received transactions at some point, or
// blocks that are assumed-valid on the basis of snapshot load (see
// PopulateAndValidateSnapshot()).
// Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx > 0) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
pindex->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindex);
}
if (pindex->IsAssumedValid() ||
(pindex->IsValid(BLOCK_VALID_TRANSACTIONS) &&
(pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))) {
// Fill each chainstate's block candidate set. Only add assumed-valid
// blocks to the tip candidate set if the chainstate is allowed to rely on
// assumed-valid blocks.
//
// If all setBlockIndexCandidates contained the assumed-valid blocks, the
// background chainstate's ActivateBestChain() call would add assumed-valid
// blocks to the chain (based on how FindMostWorkChain() works). Obviously
// we don't want this since the purpose of the background validation chain
// is to validate assued-valid blocks.
//
// Note: This is considering all blocks whose height is greater or equal to
// the first assumed-valid block to be assumed-valid blocks, and excluding
// them from the background chainstate's setBlockIndexCandidates set. This
// does mean that some blocks which are not technically assumed-valid
// (later blocks on a fork beginning before the first assumed-valid block)
// might not get added to the the background chainstate, but this is ok,
// because they will still be attached to the active chainstate if they
// actually contain more work.
//
// Instad of this height-based approach, an earlier attempt was made at
// detecting "holistically" whether the block index under consideration
// relied on an assumed-valid ancestor, but this proved to be too slow to
// be practical.
for (CChainState* chainstate : chainman.GetAll()) {
if (chainstate->reliesOnAssumedValid() ||
pindex->nHeight < first_assumed_valid_height) {
chainstate->setBlockIndexCandidates.insert(pindex);
}
}
}
if (pindex->nStatus & BLOCK_FAILED_MASK && (!chainman.m_best_invalid || pindex->nChainWork > chainman.m_best_invalid->nChainWork)) {
chainman.m_best_invalid = pindex;
}
if (pindex->pprev)
pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
return true;
}
void BlockManager::Unload() {
m_blocks_unlinked.clear();
for (const BlockMap::value_type& entry : m_block_index) {
delete entry.second;
}
m_block_index.clear();
}
bool BlockManager::LoadBlockIndexDB(ChainstateManager& chainman)
{
if (!LoadBlockIndex(::Params().GetConsensus(), chainman)) {
return false;
}
// Load block file info
m_block_tree_db->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
m_block_tree_db->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
std::set<int> setBlkDataFiles;
for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
CBlockIndex* pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++)
{
FlatFilePos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
m_block_tree_db->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
m_block_tree_db->ReadReindexing(fReindexing);
if(fReindexing) fReindex = true;
return true;
}
void CChainState::LoadMempool(const ArgsManager& args)
{
if (!m_mempool) return;

View File

@ -15,6 +15,7 @@
#include <chain.h>
#include <consensus/amount.h>
#include <fs.h>
#include <node/blockstorage.h>
#include <policy/feerate.h>
#include <policy/packages.h>
#include <script/script_error.h>
@ -40,7 +41,6 @@
class CChainState;
class CBlockTreeDB;
class CChainParams;
struct CCheckpointData;
class CTxMemPool;
class ChainstateManager;
class SnapshotMetadata;
@ -107,7 +107,6 @@ enum class SynchronizationState {
};
extern RecursiveMutex cs_main;
typedef std::unordered_map<uint256, CBlockIndex*, BlockHasher> BlockMap;
extern Mutex g_best_block_mutex;
extern std::condition_variable g_best_block_cv;
/** Used to notify getblocktemplate RPC of new tips. */
@ -381,85 +380,6 @@ enum class FlushStateMode {
ALWAYS
};
struct CBlockIndexWorkComparator
{
bool operator()(const CBlockIndex *pa, const CBlockIndex *pb) const;
};
/**
* Maintains a tree of blocks (stored in `m_block_index`) which is consulted
* to determine where the most-work tip is.
*
* This data is used mostly in `CChainState` - information about, e.g.,
* candidate tips is not maintained here.
*/
class BlockManager
{
friend CChainState;
private:
/* Calculate the block/rev files to delete based on height specified by user with RPC command pruneblockchain */
void FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height);
/**
* Prune block and undo files (blk???.dat and rev???.dat) so that the disk space used is less than a user-defined target.
* The user sets the target (in MB) on the command line or in config file. This will be run on startup and whenever new
* space is allocated in a block or undo file, staying below the target. Changing back to unpruned requires a reindex
* (which in this case means the blockchain must be re-downloaded.)
*
* Pruning functions are called from FlushStateToDisk when the global fCheckForPruning flag has been set.
* Block and undo files are deleted in lock-step (when blk00003.dat is deleted, so is rev00003.dat.)
* Pruning cannot take place until the longest chain is at least a certain length (100000 on mainnet, 1000 on testnet, 1000 on regtest).
* Pruning will never delete a block within a defined distance (currently 288) from the active chain's tip.
* The block index is updated by unsetting HAVE_DATA and HAVE_UNDO for any blocks that were stored in the deleted files.
* A db flag records the fact that at least some block files have been pruned.
*
* @param[out] setFilesToPrune The set of file indices that can be unlinked will be returned
*/
void FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd);
public:
BlockMap m_block_index GUARDED_BY(cs_main);
/**
* All pairs A->B, where A (or one of its ancestors) misses transactions, but B has transactions.
* Pruned nodes may have entries where B is missing data.
*/
std::multimap<CBlockIndex*, CBlockIndex*> m_blocks_unlinked;
std::unique_ptr<CBlockTreeDB> m_block_tree_db GUARDED_BY(::cs_main);
bool LoadBlockIndexDB(ChainstateManager& chainman) EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
/**
* Load the blocktree off disk and into memory. Populate certain metadata
* per index entry (nStatus, nChainWork, nTimeMax, etc.) as well as peripheral
* collections like setDirtyBlockIndex.
*/
bool LoadBlockIndex(
const Consensus::Params& consensus_params,
ChainstateManager& chainman) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/** Clear all data members. */
void Unload() EXCLUSIVE_LOCKS_REQUIRED(cs_main);
CBlockIndex* AddToBlockIndex(const CBlockHeader& block) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
/** Create a new block index entry for a given block hash */
CBlockIndex* InsertBlockIndex(const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
//! Mark one block file as pruned (modify associated database entries)
void PruneOneBlockFile(const int fileNumber) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
CBlockIndex* LookupBlockIndex(const uint256& hash) const EXCLUSIVE_LOCKS_REQUIRED(cs_main);
//! Returns last CBlockIndex* that is a checkpoint
CBlockIndex* GetLastCheckpoint(const CCheckpointData& data) EXCLUSIVE_LOCKS_REQUIRED(cs_main);
~BlockManager() {
Unload();
}
};
/**
* A convenience class for constructing the CCoinsView* hierarchy used
* to facilitate access to the UTXO set.