mirror of
https://github.com/bitcoin/bitcoin.git
synced 2024-11-20 10:38:42 +01:00
Merge #20147: Update libsecp256k1 (endomorphism, test improvements)
52380bf304
Squashed 'src/secp256k1/' changes from 8ab24e8dad..c6b6b8f1bb (Pieter Wuille) Pull request description: This updates the libsecp256k1 subtree to the latest master, which includes: * Enabling the GLV endomorphism optimization by default (and removing support for the non-GLV EC multiplication) * Added a proof for the correctness of the lambda split algorithm by roconnor-blockstream (other code was relying on the fact that it always outputs 128 bit results, which isn't at all obvious). * Improved exhaustive tests, in particular for the Schnorr signature module * Various other testing and CI improvements ACKs for top commit: fanquake: ACK9e5626d2a8
- performed a squash and checked that the changes were the same. The non-endomorphism code has now been ripped out. benthecarman: ACK9e5626d
Tree-SHA512: 50fda5f3f934ee525f01cfc15e4f5efbc5261a97f2b77fe1b3453ee0edcf1281ad74ab4532a2fe1fe907652dd47023beff8cf3d73bf34f65ac914a694b9e7110
This commit is contained in:
commit
f2e6d14430
@ -17,33 +17,29 @@ compiler:
|
||||
- gcc
|
||||
env:
|
||||
global:
|
||||
- WIDEMUL=auto BIGNUM=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ECMULTGENPRECISION=auto ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no RECOVERY=no SCHNORRSIG=no EXPERIMENTAL=no CTIMETEST=yes BENCH=yes ITERS=2
|
||||
- WIDEMUL=auto BIGNUM=auto STATICPRECOMPUTATION=yes ECMULTGENPRECISION=auto ASM=no BUILD=check WITH_VALGRIND=yes RUN_VALGRIND=no EXTRAFLAGS= HOST= ECDH=no RECOVERY=no SCHNORRSIG=no EXPERIMENTAL=no CTIMETEST=yes BENCH=yes ITERS=2
|
||||
matrix:
|
||||
- WIDEMUL=int64 RECOVERY=yes
|
||||
- WIDEMUL=int64 ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
|
||||
- WIDEMUL=int64 ENDOMORPHISM=yes
|
||||
- WIDEMUL=int128
|
||||
- WIDEMUL=int128 RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
|
||||
- WIDEMUL=int128 ENDOMORPHISM=yes
|
||||
- WIDEMUL=int128 ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
|
||||
- WIDEMUL=int128 ECDH=yes EXPERIMENTAL=yes SCHNORRSIG=yes
|
||||
- WIDEMUL=int128 ASM=x86_64
|
||||
- WIDEMUL=int128 ENDOMORPHISM=yes ASM=x86_64
|
||||
- BIGNUM=no
|
||||
- BIGNUM=no ENDOMORPHISM=yes RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
|
||||
- BIGNUM=no RECOVERY=yes EXPERIMENTAL=yes SCHNORRSIG=yes
|
||||
- BIGNUM=no STATICPRECOMPUTATION=no
|
||||
- BUILD=distcheck CTIMETEST= BENCH=
|
||||
- BUILD=distcheck WITH_VALGRIND=no CTIMETEST=no BENCH=no
|
||||
- CPPFLAGS=-DDETERMINISTIC
|
||||
- CFLAGS=-O0 CTIMETEST=
|
||||
- CFLAGS=-O0 CTIMETEST=no
|
||||
- ECMULTGENPRECISION=2
|
||||
- ECMULTGENPRECISION=8
|
||||
- VALGRIND=yes ENDOMORPHISM=yes BIGNUM=no ASM=x86_64 EXPERIMENTAL=yes ECDH=yes RECOVERY=yes EXTRAFLAGS="--disable-openssl-tests" CPPFLAGS=-DVALGRIND BUILD=
|
||||
- VALGRIND=yes BIGNUM=no ASM=x86_64 EXPERIMENTAL=yes ECDH=yes RECOVERY=yes EXTRAFLAGS="--disable-openssl-tests" CPPFLAGS=-DVALGRIND BUILD=
|
||||
- RUN_VALGRIND=yes BIGNUM=no ASM=x86_64 EXPERIMENTAL=yes ECDH=yes RECOVERY=yes EXTRAFLAGS="--disable-openssl-tests" BUILD=
|
||||
matrix:
|
||||
fast_finish: true
|
||||
include:
|
||||
- compiler: clang
|
||||
os: linux
|
||||
env: HOST=i686-linux-gnu ENDOMORPHISM=yes
|
||||
env: HOST=i686-linux-gnu
|
||||
addons:
|
||||
apt:
|
||||
packages:
|
||||
@ -63,7 +59,7 @@ matrix:
|
||||
- libtool-bin
|
||||
- libc6-dbg:i386
|
||||
- compiler: gcc
|
||||
env: HOST=i686-linux-gnu ENDOMORPHISM=yes
|
||||
env: HOST=i686-linux-gnu
|
||||
os: linux
|
||||
addons:
|
||||
apt:
|
||||
|
@ -48,7 +48,7 @@ Implementation details
|
||||
* Use wNAF notation for point multiplicands.
|
||||
* Use a much larger window for multiples of G, using precomputed multiples.
|
||||
* Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
|
||||
* Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
|
||||
* Use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
|
||||
* Point multiplication for signing
|
||||
* Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
|
||||
* Intended to be completely free of timing sidechannels for secret-key operations (on reasonable hardware/toolchains)
|
||||
|
@ -67,7 +67,7 @@ esac
|
||||
|
||||
CFLAGS="-W $CFLAGS"
|
||||
|
||||
warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
|
||||
warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
|
||||
saved_CFLAGS="$CFLAGS"
|
||||
CFLAGS="$warn_CFLAGS $CFLAGS"
|
||||
AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}])
|
||||
@ -116,11 +116,6 @@ AC_ARG_ENABLE(exhaustive_tests,
|
||||
[use_exhaustive_tests=$enableval],
|
||||
[use_exhaustive_tests=yes])
|
||||
|
||||
AC_ARG_ENABLE(endomorphism,
|
||||
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism [default=no]]),
|
||||
[use_endomorphism=$enableval],
|
||||
[use_endomorphism=no])
|
||||
|
||||
AC_ARG_ENABLE(ecmult_static_precomputation,
|
||||
AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing [default=auto]]),
|
||||
[use_ecmult_static_precomputation=$enableval],
|
||||
@ -164,8 +159,7 @@ AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto],
|
||||
AC_ARG_WITH([ecmult-window], [AS_HELP_STRING([--with-ecmult-window=SIZE|auto],
|
||||
[window size for ecmult precomputation for verification, specified as integer in range [2..24].]
|
||||
[Larger values result in possibly better performance at the cost of an exponentially larger precomputed table.]
|
||||
[The table will store 2^(SIZE-2) * 64 bytes of data but can be larger in memory due to platform-specific padding and alignment.]
|
||||
[If the endomorphism optimization is enabled, two tables of this size are used instead of only one.]
|
||||
[The table will store 2^(SIZE-1) * 64 bytes of data but can be larger in memory due to platform-specific padding and alignment.]
|
||||
["auto" is a reasonable setting for desktop machines (currently 15). [default=auto]]
|
||||
)],
|
||||
[req_ecmult_window=$withval], [req_ecmult_window=auto])
|
||||
@ -178,7 +172,21 @@ AC_ARG_WITH([ecmult-gen-precision], [AS_HELP_STRING([--with-ecmult-gen-precision
|
||||
)],
|
||||
[req_ecmult_gen_precision=$withval], [req_ecmult_gen_precision=auto])
|
||||
|
||||
AC_CHECK_HEADER([valgrind/memcheck.h], [enable_valgrind=yes], [enable_valgrind=no], [])
|
||||
AC_ARG_WITH([valgrind], [AS_HELP_STRING([--with-valgrind=yes|no|auto],
|
||||
[Build with extra checks for running inside Valgrind [default=auto]]
|
||||
)],
|
||||
[req_valgrind=$withval], [req_valgrind=auto])
|
||||
|
||||
if test x"$req_valgrind" = x"no"; then
|
||||
enable_valgrind=no
|
||||
else
|
||||
AC_CHECK_HEADER([valgrind/memcheck.h], [enable_valgrind=yes], [
|
||||
if test x"$req_valgrind" = x"yes"; then
|
||||
AC_MSG_ERROR([Valgrind support explicitly requested but valgrind/memcheck.h header not available])
|
||||
fi
|
||||
enable_valgrind=no
|
||||
], [])
|
||||
fi
|
||||
AM_CONDITIONAL([VALGRIND_ENABLED],[test "$enable_valgrind" = "yes"])
|
||||
|
||||
if test x"$enable_coverage" = x"yes"; then
|
||||
@ -415,10 +423,6 @@ if test x"$set_bignum" = x"gmp"; then
|
||||
SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
|
||||
fi
|
||||
|
||||
if test x"$use_endomorphism" = x"yes"; then
|
||||
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
|
||||
fi
|
||||
|
||||
if test x"$set_precomp" = x"yes"; then
|
||||
AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
|
||||
fi
|
||||
@ -500,7 +504,6 @@ AC_OUTPUT
|
||||
|
||||
echo
|
||||
echo "Build Options:"
|
||||
echo " with endomorphism = $use_endomorphism"
|
||||
echo " with ecmult precomp = $set_precomp"
|
||||
echo " with external callbacks = $use_external_default_callbacks"
|
||||
echo " with benchmarks = $use_benchmark"
|
||||
|
@ -13,27 +13,28 @@ then
|
||||
fi
|
||||
|
||||
./configure \
|
||||
--enable-experimental="$EXPERIMENTAL" --enable-endomorphism="$ENDOMORPHISM" \
|
||||
--enable-experimental="$EXPERIMENTAL" \
|
||||
--with-test-override-wide-multiply="$WIDEMUL" --with-bignum="$BIGNUM" --with-asm="$ASM" \
|
||||
--enable-ecmult-static-precomputation="$STATICPRECOMPUTATION" --with-ecmult-gen-precision="$ECMULTGENPRECISION" \
|
||||
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
|
||||
--enable-module-schnorrsig="$SCHNORRSIG" \
|
||||
--with-valgrind="$WITH_VALGRIND" \
|
||||
--host="$HOST" $EXTRAFLAGS
|
||||
|
||||
if [ -n "$BUILD" ]
|
||||
then
|
||||
make -j2 "$BUILD"
|
||||
fi
|
||||
if [ -n "$VALGRIND" ]
|
||||
if [ "$RUN_VALGRIND" = "yes" ]
|
||||
then
|
||||
make -j2
|
||||
# the `--error-exitcode` is required to make the test fail if valgrind found errors, otherwise it'll return 0 (http://valgrind.org/docs/manual/manual-core.html)
|
||||
valgrind --error-exitcode=42 ./tests 16
|
||||
valgrind --error-exitcode=42 ./exhaustive_tests
|
||||
fi
|
||||
if [ -n "$BENCH" ]
|
||||
if [ "$BENCH" = "yes" ]
|
||||
then
|
||||
if [ -n "$VALGRIND" ]
|
||||
if [ "$RUN_VALGRIND" = "yes" ]
|
||||
then
|
||||
# Using the local `libtool` because on macOS the system's libtool has nothing to do with GNU libtool
|
||||
EXEC='./libtool --mode=execute valgrind --error-exitcode=42'
|
||||
@ -56,8 +57,12 @@ then
|
||||
then
|
||||
$EXEC ./bench_ecdh >> bench.log 2>&1
|
||||
fi
|
||||
if [ "$SCHNORRSIG" = "yes" ]
|
||||
then
|
||||
$EXEC ./bench_schnorrsig >> bench.log 2>&1
|
||||
fi
|
||||
fi
|
||||
if [ -n "$CTIMETEST" ]
|
||||
if [ "$CTIMETEST" = "yes" ]
|
||||
then
|
||||
./libtool --mode=execute valgrind --error-exitcode=42 ./valgrind_ctime_test > valgrind_ctime_test.log 2>&1
|
||||
fi
|
||||
|
129
src/secp256k1/sage/gen_exhaustive_groups.sage
Normal file
129
src/secp256k1/sage/gen_exhaustive_groups.sage
Normal file
@ -0,0 +1,129 @@
|
||||
# Define field size and field
|
||||
P = 2^256 - 2^32 - 977
|
||||
F = GF(P)
|
||||
BETA = F(0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee)
|
||||
|
||||
assert(BETA != F(1) and BETA^3 == F(1))
|
||||
|
||||
orders_done = set()
|
||||
results = {}
|
||||
first = True
|
||||
for b in range(1, P):
|
||||
# There are only 6 curves (up to isomorphism) of the form y^2=x^3+B. Stop once we have tried all.
|
||||
if len(orders_done) == 6:
|
||||
break
|
||||
|
||||
E = EllipticCurve(F, [0, b])
|
||||
print("Analyzing curve y^2 = x^3 + %i" % b)
|
||||
n = E.order()
|
||||
# Skip curves with an order we've already tried
|
||||
if n in orders_done:
|
||||
print("- Isomorphic to earlier curve")
|
||||
continue
|
||||
orders_done.add(n)
|
||||
# Skip curves isomorphic to the real secp256k1
|
||||
if n.is_pseudoprime():
|
||||
print(" - Isomorphic to secp256k1")
|
||||
continue
|
||||
|
||||
print("- Finding subgroups")
|
||||
|
||||
# Find what prime subgroups exist
|
||||
for f, _ in n.factor():
|
||||
print("- Analyzing subgroup of order %i" % f)
|
||||
# Skip subgroups of order >1000
|
||||
if f < 4 or f > 1000:
|
||||
print(" - Bad size")
|
||||
continue
|
||||
|
||||
# Iterate over X coordinates until we find one that is on the curve, has order f,
|
||||
# and for which curve isomorphism exists that maps it to X coordinate 1.
|
||||
for x in range(1, P):
|
||||
# Skip X coordinates not on the curve, and construct the full point otherwise.
|
||||
if not E.is_x_coord(x):
|
||||
continue
|
||||
G = E.lift_x(F(x))
|
||||
|
||||
print(" - Analyzing (multiples of) point with X=%i" % x)
|
||||
|
||||
# Skip points whose order is not a multiple of f. Project the point to have
|
||||
# order f otherwise.
|
||||
if (G.order() % f):
|
||||
print(" - Bad order")
|
||||
continue
|
||||
G = G * (G.order() // f)
|
||||
|
||||
# Find lambda for endomorphism. Skip if none can be found.
|
||||
lam = None
|
||||
for l in Integers(f)(1).nth_root(3, all=True):
|
||||
if int(l)*G == E(BETA*G[0], G[1]):
|
||||
lam = int(l)
|
||||
break
|
||||
if lam is None:
|
||||
print(" - No endomorphism for this subgroup")
|
||||
break
|
||||
|
||||
# Now look for an isomorphism of the curve that gives this point an X
|
||||
# coordinate equal to 1.
|
||||
# If (x,y) is on y^2 = x^3 + b, then (a^2*x, a^3*y) is on y^2 = x^3 + a^6*b.
|
||||
# So look for m=a^2=1/x.
|
||||
m = F(1)/G[0]
|
||||
if not m.is_square():
|
||||
print(" - No curve isomorphism maps it to a point with X=1")
|
||||
continue
|
||||
a = m.sqrt()
|
||||
rb = a^6*b
|
||||
RE = EllipticCurve(F, [0, rb])
|
||||
|
||||
# Use as generator twice the image of G under the above isormorphism.
|
||||
# This means that generator*(1/2 mod f) will have X coordinate 1.
|
||||
RG = RE(1, a^3*G[1]) * 2
|
||||
# And even Y coordinate.
|
||||
if int(RG[1]) % 2:
|
||||
RG = -RG
|
||||
assert(RG.order() == f)
|
||||
assert(lam*RG == RE(BETA*RG[0], RG[1]))
|
||||
|
||||
# We have found curve RE:y^2=x^3+rb with generator RG of order f. Remember it
|
||||
results[f] = {"b": rb, "G": RG, "lambda": lam}
|
||||
print(" - Found solution")
|
||||
break
|
||||
|
||||
print("")
|
||||
|
||||
print("")
|
||||
print("")
|
||||
print("/* To be put in src/group_impl.h: */")
|
||||
first = True
|
||||
for f in sorted(results.keys()):
|
||||
b = results[f]["b"]
|
||||
G = results[f]["G"]
|
||||
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
|
||||
first = False
|
||||
print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(")
|
||||
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
|
||||
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
|
||||
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
|
||||
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
|
||||
print(");")
|
||||
print("static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(")
|
||||
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
|
||||
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
|
||||
print(");")
|
||||
print("# else")
|
||||
print("# error No known generator for the specified exhaustive test group order.")
|
||||
print("# endif")
|
||||
|
||||
print("")
|
||||
print("")
|
||||
print("/* To be put in src/scalar_impl.h: */")
|
||||
first = True
|
||||
for f in sorted(results.keys()):
|
||||
lam = results[f]["lambda"]
|
||||
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
|
||||
first = False
|
||||
print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
|
||||
print("# else")
|
||||
print("# error No known lambda for the specified exhaustive test group order.")
|
||||
print("# endif")
|
||||
print("")
|
@ -7,6 +7,8 @@
|
||||
#ifndef SECP256K1_ASSUMPTIONS_H
|
||||
#define SECP256K1_ASSUMPTIONS_H
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#include "util.h"
|
||||
|
||||
/* This library, like most software, relies on a number of compiler implementation defined (but not undefined)
|
||||
@ -19,7 +21,11 @@ struct secp256k1_assumption_checker {
|
||||
allowed. */
|
||||
int dummy_array[(
|
||||
/* Bytes are 8 bits. */
|
||||
CHAR_BIT == 8 &&
|
||||
(CHAR_BIT == 8) &&
|
||||
|
||||
/* No integer promotion for uint32_t. This ensures that we can multiply uintXX_t values where XX >= 32
|
||||
without signed overflow, which would be undefined behaviour. */
|
||||
(UINT_MAX <= UINT32_MAX) &&
|
||||
|
||||
/* Conversions from unsigned to signed outside of the bounds of the signed type are
|
||||
implementation-defined. Verify that they function as reinterpreting the lower
|
||||
|
@ -11,7 +11,6 @@
|
||||
|
||||
#undef USE_ASM_X86_64
|
||||
#undef USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
#undef USE_ENDOMORPHISM
|
||||
#undef USE_EXTERNAL_ASM
|
||||
#undef USE_EXTERNAL_DEFAULT_CALLBACKS
|
||||
#undef USE_FIELD_INV_BUILTIN
|
||||
|
@ -117,7 +117,6 @@ void bench_scalar_mul(void* arg, int iters) {
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
void bench_scalar_split(void* arg, int iters) {
|
||||
int i, j = 0;
|
||||
bench_inv *data = (bench_inv*)arg;
|
||||
@ -128,7 +127,6 @@ void bench_scalar_split(void* arg, int iters) {
|
||||
}
|
||||
CHECK(j <= iters);
|
||||
}
|
||||
#endif
|
||||
|
||||
void bench_scalar_inverse(void* arg, int iters) {
|
||||
int i, j = 0;
|
||||
@ -397,9 +395,7 @@ int main(int argc, char **argv) {
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, iters*10);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
|
||||
#endif
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
|
||||
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
|
||||
|
||||
|
@ -15,9 +15,7 @@
|
||||
typedef struct {
|
||||
/* For accelerating the computation of a*P + b*G: */
|
||||
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
|
||||
#endif
|
||||
} secp256k1_ecmult_context;
|
||||
|
||||
static const size_t SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE;
|
||||
|
@ -140,19 +140,16 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
secp256k1_fe Z;
|
||||
|
||||
int skew_1;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
|
||||
int skew_lam;
|
||||
secp256k1_scalar q_1, q_lam;
|
||||
#endif
|
||||
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
|
||||
|
||||
int i;
|
||||
|
||||
/* build wnaf representation for q. */
|
||||
int rsize = size;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
rsize = 128;
|
||||
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
|
||||
@ -160,12 +157,9 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128);
|
||||
skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
skew_1 = secp256k1_wnaf_const(wnaf_1, scalar, WINDOW_A - 1, size);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
skew_lam = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Calculate odd multiples of a.
|
||||
@ -179,14 +173,12 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_fe_normalize_weak(&pre_a[i].y);
|
||||
}
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
/* first loop iteration (separated out so we can directly set r, rather
|
||||
* than having it start at infinity, get doubled several times, then have
|
||||
@ -195,14 +187,12 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
VERIFY_CHECK(i != 0);
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
|
||||
secp256k1_gej_set_ge(r, &tmpa);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)];
|
||||
VERIFY_CHECK(i != 0);
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
}
|
||||
#endif
|
||||
/* remaining loop iterations */
|
||||
for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) {
|
||||
int n;
|
||||
@ -215,14 +205,12 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
|
||||
VERIFY_CHECK(n != 0);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
n = wnaf_lam[i];
|
||||
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
|
||||
VERIFY_CHECK(n != 0);
|
||||
secp256k1_gej_add_ge(r, r, &tmpa);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
secp256k1_fe_mul(&r->z, &r->z, &Z);
|
||||
@ -231,43 +219,35 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
|
||||
/* Correct for wNAF skew */
|
||||
secp256k1_ge correction = *a;
|
||||
secp256k1_ge_storage correction_1_stor;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge_storage correction_lam_stor;
|
||||
#endif
|
||||
secp256k1_ge_storage a2_stor;
|
||||
secp256k1_gej tmpj;
|
||||
secp256k1_gej_set_ge(&tmpj, &correction);
|
||||
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
|
||||
secp256k1_ge_set_gej(&correction, &tmpj);
|
||||
secp256k1_ge_to_storage(&correction_1_stor, a);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
secp256k1_ge_to_storage(&correction_lam_stor, a);
|
||||
}
|
||||
#endif
|
||||
secp256k1_ge_to_storage(&a2_stor, &correction);
|
||||
|
||||
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
|
||||
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Apply the correction */
|
||||
secp256k1_ge_from_storage(&correction, &correction_1_stor);
|
||||
secp256k1_ge_neg(&correction, &correction);
|
||||
secp256k1_gej_add_ge(r, r, &correction);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (size > 128) {
|
||||
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
|
||||
secp256k1_ge_neg(&correction, &correction);
|
||||
secp256k1_ge_mul_lambda(&correction, &correction);
|
||||
secp256k1_gej_add_ge(r, r, &correction);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -38,8 +38,8 @@
|
||||
* (1 << (WINDOW_G - 2)) * sizeof(secp256k1_ge_storage) bytes,
|
||||
* where sizeof(secp256k1_ge_storage) is typically 64 bytes but can
|
||||
* be larger due to platform-specific padding and alignment.
|
||||
* If the endomorphism optimization is enabled (USE_ENDOMORMPHSIM)
|
||||
* two tables of this size are used instead of only one.
|
||||
* Two tables of this size are used (due to the endomorphism
|
||||
* optimization).
|
||||
*/
|
||||
# define WINDOW_G ECMULT_WINDOW_SIZE
|
||||
#endif
|
||||
@ -59,11 +59,7 @@
|
||||
# error Set ECMULT_WINDOW_SIZE to an integer in range [2..24].
|
||||
#endif
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
#define WNAF_BITS 128
|
||||
#else
|
||||
#define WNAF_BITS 256
|
||||
#endif
|
||||
#define WNAF_BITS 128
|
||||
#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w))
|
||||
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
|
||||
|
||||
@ -77,17 +73,9 @@
|
||||
#define PIPPENGER_MAX_BUCKET_WINDOW 12
|
||||
|
||||
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
#define ECMULT_PIPPENGER_THRESHOLD 88
|
||||
#else
|
||||
#define ECMULT_PIPPENGER_THRESHOLD 160
|
||||
#endif
|
||||
#define ECMULT_PIPPENGER_THRESHOLD 88
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
|
||||
#else
|
||||
#define ECMULT_MAX_POINTS_PER_BATCH 10000000
|
||||
#endif
|
||||
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
|
||||
|
||||
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
|
||||
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
|
||||
@ -313,16 +301,12 @@ static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp25
|
||||
|
||||
static const size_t SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE =
|
||||
ROUND_TO_ALIGN(sizeof((*((secp256k1_ecmult_context*) NULL)->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G))
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
+ ROUND_TO_ALIGN(sizeof((*((secp256k1_ecmult_context*) NULL)->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G))
|
||||
#endif
|
||||
;
|
||||
|
||||
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
|
||||
ctx->pre_g = NULL;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
ctx->pre_g_128 = NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, void **prealloc) {
|
||||
@ -347,7 +331,6 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, void *
|
||||
/* precompute the tables with odd multiples */
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
{
|
||||
secp256k1_gej g_128j;
|
||||
int i;
|
||||
@ -364,7 +347,6 @@ static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, void *
|
||||
}
|
||||
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void secp256k1_ecmult_context_finalize_memcpy(secp256k1_ecmult_context *dst, const secp256k1_ecmult_context *src) {
|
||||
@ -372,11 +354,9 @@ static void secp256k1_ecmult_context_finalize_memcpy(secp256k1_ecmult_context *d
|
||||
/* We cast to void* first to suppress a -Wcast-align warning. */
|
||||
dst->pre_g = (secp256k1_ge_storage (*)[])(void*)((unsigned char*)dst + ((unsigned char*)(src->pre_g) - (unsigned char*)src));
|
||||
}
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (src->pre_g_128 != NULL) {
|
||||
dst->pre_g_128 = (secp256k1_ge_storage (*)[])(void*)((unsigned char*)dst + ((unsigned char*)(src->pre_g_128) - (unsigned char*)src));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
|
||||
@ -447,16 +427,11 @@ static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a,
|
||||
}
|
||||
|
||||
struct secp256k1_strauss_point_state {
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_scalar na_1, na_lam;
|
||||
int wnaf_na_1[130];
|
||||
int wnaf_na_lam[130];
|
||||
int wnaf_na_1[129];
|
||||
int wnaf_na_lam[129];
|
||||
int bits_na_1;
|
||||
int bits_na_lam;
|
||||
#else
|
||||
int wnaf_na[256];
|
||||
int bits_na;
|
||||
#endif
|
||||
size_t input_pos;
|
||||
};
|
||||
|
||||
@ -464,26 +439,19 @@ struct secp256k1_strauss_state {
|
||||
secp256k1_gej* prej;
|
||||
secp256k1_fe* zr;
|
||||
secp256k1_ge* pre_a;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge* pre_a_lam;
|
||||
#endif
|
||||
struct secp256k1_strauss_point_state* ps;
|
||||
};
|
||||
|
||||
static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
|
||||
secp256k1_ge tmpa;
|
||||
secp256k1_fe Z;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/* Splitted G factors. */
|
||||
secp256k1_scalar ng_1, ng_128;
|
||||
int wnaf_ng_1[129];
|
||||
int bits_ng_1 = 0;
|
||||
int wnaf_ng_128[129];
|
||||
int bits_ng_128 = 0;
|
||||
#else
|
||||
int wnaf_ng[256];
|
||||
int bits_ng = 0;
|
||||
#endif
|
||||
int i;
|
||||
int bits = 0;
|
||||
int np;
|
||||
@ -494,28 +462,20 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c
|
||||
continue;
|
||||
}
|
||||
state->ps[no].input_pos = np;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
|
||||
secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]);
|
||||
|
||||
/* build wnaf representation for na_1 and na_lam. */
|
||||
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A);
|
||||
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A);
|
||||
VERIFY_CHECK(state->ps[no].bits_na_1 <= 130);
|
||||
VERIFY_CHECK(state->ps[no].bits_na_lam <= 130);
|
||||
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 129, &state->ps[no].na_1, WINDOW_A);
|
||||
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 129, &state->ps[no].na_lam, WINDOW_A);
|
||||
VERIFY_CHECK(state->ps[no].bits_na_1 <= 129);
|
||||
VERIFY_CHECK(state->ps[no].bits_na_lam <= 129);
|
||||
if (state->ps[no].bits_na_1 > bits) {
|
||||
bits = state->ps[no].bits_na_1;
|
||||
}
|
||||
if (state->ps[no].bits_na_lam > bits) {
|
||||
bits = state->ps[no].bits_na_lam;
|
||||
}
|
||||
#else
|
||||
/* build wnaf representation for na. */
|
||||
state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A);
|
||||
if (state->ps[no].bits_na > bits) {
|
||||
bits = state->ps[no].bits_na;
|
||||
}
|
||||
#endif
|
||||
++no;
|
||||
}
|
||||
|
||||
@ -547,7 +507,6 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c
|
||||
secp256k1_fe_set_int(&Z, 1);
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
for (np = 0; np < no; ++np) {
|
||||
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
|
||||
secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]);
|
||||
@ -568,21 +527,12 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c
|
||||
bits = bits_ng_128;
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (ng) {
|
||||
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
|
||||
if (bits_ng > bits) {
|
||||
bits = bits_ng;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
secp256k1_gej_set_infinity(r);
|
||||
|
||||
for (i = bits - 1; i >= 0; i--) {
|
||||
int n;
|
||||
secp256k1_gej_double_var(r, r, NULL);
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
for (np = 0; np < no; ++np) {
|
||||
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
|
||||
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
|
||||
@ -601,18 +551,6 @@ static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, c
|
||||
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
|
||||
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
|
||||
}
|
||||
#else
|
||||
for (np = 0; np < no; ++np) {
|
||||
if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) {
|
||||
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
|
||||
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
|
||||
}
|
||||
}
|
||||
if (i < bits_ng && (n = wnaf_ng[i])) {
|
||||
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
|
||||
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (!r->infinity) {
|
||||
@ -625,27 +563,19 @@ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej
|
||||
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
struct secp256k1_strauss_point_state ps[1];
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
|
||||
#endif
|
||||
struct secp256k1_strauss_state state;
|
||||
|
||||
state.prej = prej;
|
||||
state.zr = zr;
|
||||
state.pre_a = pre_a;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
state.pre_a_lam = pre_a_lam;
|
||||
#endif
|
||||
state.ps = ps;
|
||||
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng);
|
||||
}
|
||||
|
||||
static size_t secp256k1_strauss_scratch_size(size_t n_points) {
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
|
||||
#else
|
||||
static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
|
||||
#endif
|
||||
return n_points*point_size;
|
||||
}
|
||||
|
||||
@ -665,12 +595,8 @@ static int secp256k1_ecmult_strauss_batch(const secp256k1_callback* error_callba
|
||||
scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(secp256k1_scalar));
|
||||
state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej));
|
||||
state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
|
||||
state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A);
|
||||
#else
|
||||
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
|
||||
#endif
|
||||
state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
|
||||
|
||||
if (points == NULL || scalars == NULL || state.prej == NULL || state.zr == NULL || state.pre_a == NULL) {
|
||||
@ -868,7 +794,6 @@ static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_wi
|
||||
* set of buckets) for a given number of points.
|
||||
*/
|
||||
static int secp256k1_pippenger_bucket_window(size_t n) {
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
if (n <= 1) {
|
||||
return 1;
|
||||
} else if (n <= 4) {
|
||||
@ -892,33 +817,6 @@ static int secp256k1_pippenger_bucket_window(size_t n) {
|
||||
} else {
|
||||
return PIPPENGER_MAX_BUCKET_WINDOW;
|
||||
}
|
||||
#else
|
||||
if (n <= 1) {
|
||||
return 1;
|
||||
} else if (n <= 11) {
|
||||
return 2;
|
||||
} else if (n <= 45) {
|
||||
return 3;
|
||||
} else if (n <= 100) {
|
||||
return 4;
|
||||
} else if (n <= 275) {
|
||||
return 5;
|
||||
} else if (n <= 625) {
|
||||
return 6;
|
||||
} else if (n <= 1850) {
|
||||
return 7;
|
||||
} else if (n <= 3400) {
|
||||
return 8;
|
||||
} else if (n <= 9630) {
|
||||
return 9;
|
||||
} else if (n <= 17900) {
|
||||
return 10;
|
||||
} else if (n <= 32800) {
|
||||
return 11;
|
||||
} else {
|
||||
return PIPPENGER_MAX_BUCKET_WINDOW;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
@ -926,7 +824,6 @@ static int secp256k1_pippenger_bucket_window(size_t n) {
|
||||
*/
|
||||
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
|
||||
switch(bucket_window) {
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
case 1: return 1;
|
||||
case 2: return 4;
|
||||
case 3: return 20;
|
||||
@ -939,26 +836,11 @@ static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
|
||||
case 10: return 7880;
|
||||
case 11: return 16050;
|
||||
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
|
||||
#else
|
||||
case 1: return 1;
|
||||
case 2: return 11;
|
||||
case 3: return 45;
|
||||
case 4: return 100;
|
||||
case 5: return 275;
|
||||
case 6: return 625;
|
||||
case 7: return 1850;
|
||||
case 8: return 3400;
|
||||
case 9: return 9630;
|
||||
case 10: return 17900;
|
||||
case 11: return 32800;
|
||||
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
|
||||
#endif
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
|
||||
secp256k1_scalar tmp = *s1;
|
||||
secp256k1_scalar_split_lambda(s1, s2, &tmp);
|
||||
@ -973,32 +855,23 @@ SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, s
|
||||
secp256k1_ge_neg(p2, p2);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Returns the scratch size required for a given number of points (excluding
|
||||
* base point G) without considering alignment.
|
||||
*/
|
||||
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
size_t entries = 2*n_points + 2;
|
||||
#else
|
||||
size_t entries = n_points + 1;
|
||||
#endif
|
||||
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
|
||||
return (sizeof(secp256k1_gej) << bucket_window) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size;
|
||||
}
|
||||
|
||||
static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_callback, const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
|
||||
const size_t scratch_checkpoint = secp256k1_scratch_checkpoint(error_callback, scratch);
|
||||
/* Use 2(n+1) with the endomorphism, n+1 without, when calculating batch
|
||||
/* Use 2(n+1) with the endomorphism, when calculating batch
|
||||
* sizes. The reason for +1 is that we add the G scalar to the list of
|
||||
* other scalars. */
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
size_t entries = 2*n_points + 2;
|
||||
#else
|
||||
size_t entries = n_points + 1;
|
||||
#endif
|
||||
secp256k1_ge *points;
|
||||
secp256k1_scalar *scalars;
|
||||
secp256k1_gej *buckets;
|
||||
@ -1035,10 +908,8 @@ static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_call
|
||||
scalars[0] = *inp_g_sc;
|
||||
points[0] = secp256k1_ge_const_g;
|
||||
idx++;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
|
||||
idx++;
|
||||
#endif
|
||||
}
|
||||
|
||||
while (point_idx < n_points) {
|
||||
@ -1047,10 +918,8 @@ static int secp256k1_ecmult_pippenger_batch(const secp256k1_callback* error_call
|
||||
return 0;
|
||||
}
|
||||
idx++;
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
secp256k1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
|
||||
idx++;
|
||||
#endif
|
||||
point_idx++;
|
||||
}
|
||||
|
||||
@ -1093,9 +962,7 @@ static size_t secp256k1_pippenger_max_points(const secp256k1_callback* error_cal
|
||||
size_t space_overhead;
|
||||
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
entry_size = 2*entry_size;
|
||||
#endif
|
||||
space_overhead = (sizeof(secp256k1_gej) << bucket_window) + entry_size + sizeof(struct secp256k1_pippenger_state);
|
||||
if (space_overhead > max_alloc) {
|
||||
break;
|
||||
|
@ -59,6 +59,7 @@ static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
|
||||
/** Check whether a group element is valid (i.e., on the curve). */
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
|
||||
|
||||
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
|
||||
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
|
||||
|
||||
/** Set a group element equal to another which is given in jacobian coordinates */
|
||||
@ -115,10 +116,8 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
|
||||
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
|
||||
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
|
||||
#endif
|
||||
|
||||
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
|
||||
static void secp256k1_gej_clear(secp256k1_gej *r);
|
||||
@ -138,4 +137,15 @@ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_g
|
||||
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
|
||||
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
|
||||
|
||||
/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
|
||||
*
|
||||
* In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
|
||||
* group, and this function returns always true.
|
||||
*
|
||||
* When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
|
||||
* (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
|
||||
* function checks whether a point that is on the curve is in fact also in that subgroup.
|
||||
*/
|
||||
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);
|
||||
|
||||
#endif /* SECP256K1_GROUP_H */
|
||||
|
@ -11,49 +11,38 @@
|
||||
#include "field.h"
|
||||
#include "group.h"
|
||||
|
||||
/* These points can be generated in sage as follows:
|
||||
/* These exhaustive group test orders and generators are chosen such that:
|
||||
* - The field size is equal to that of secp256k1, so field code is the same.
|
||||
* - The curve equation is of the form y^2=x^3+B for some constant B.
|
||||
* - The subgroup has a generator 2*P, where P.x=1.
|
||||
* - The subgroup has size less than 1000 to permit exhaustive testing.
|
||||
* - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
|
||||
*
|
||||
* 0. Setup a worksheet with the following parameters.
|
||||
* b = 4 # whatever CURVE_B will be set to
|
||||
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
|
||||
* C = EllipticCurve ([F (0), F (b)])
|
||||
*
|
||||
* 1. Determine all the small orders available to you. (If there are
|
||||
* no satisfactory ones, go back and change b.)
|
||||
* print C.order().factor(limit=1000)
|
||||
*
|
||||
* 2. Choose an order as one of the prime factors listed in the above step.
|
||||
* (You can also multiply some to get a composite order, though the
|
||||
* tests will crash trying to invert scalars during signing.) We take a
|
||||
* random point and scale it to drop its order to the desired value.
|
||||
* There is some probability this won't work; just try again.
|
||||
* order = 199
|
||||
* P = C.random_point()
|
||||
* P = (int(P.order()) / int(order)) * P
|
||||
* assert(P.order() == order)
|
||||
*
|
||||
* 3. Print the values. You'll need to use a vim macro or something to
|
||||
* split the hex output into 4-byte chunks.
|
||||
* print "%x %x" % P.xy()
|
||||
* These parameters are generated using sage/gen_exhaustive_groups.sage.
|
||||
*/
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
# if EXHAUSTIVE_TEST_ORDER == 199
|
||||
# if EXHAUSTIVE_TEST_ORDER == 13
|
||||
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
|
||||
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
|
||||
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
|
||||
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
|
||||
0xc3459c3d, 0x35326167, 0xcd86cce8, 0x07a2417f,
|
||||
0x5b8bd567, 0xde8538ee, 0x0d507b0c, 0xd128f5bb,
|
||||
0x8e467fec, 0xcd30000a, 0x6cc1184e, 0x25d382c2,
|
||||
0xa2f4494e, 0x2fbe9abc, 0x8b64abac, 0xd005fb24
|
||||
);
|
||||
|
||||
static const int CURVE_B = 4;
|
||||
# elif EXHAUSTIVE_TEST_ORDER == 13
|
||||
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(
|
||||
0x3d3486b2, 0x159a9ca5, 0xc75638be, 0xb23a69bc,
|
||||
0x946a45ab, 0x24801247, 0xb4ed2b8e, 0x26b6a417
|
||||
);
|
||||
# elif EXHAUSTIVE_TEST_ORDER == 199
|
||||
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
|
||||
0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
|
||||
0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
|
||||
0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
|
||||
0x226e653f, 0xc8df7744, 0x9bacbf12, 0x7d1dcbf9,
|
||||
0x87f05b2a, 0xe7edbd28, 0x1f564575, 0xc48dcf18,
|
||||
0xa13872c2, 0xe933bb17, 0x5d9ffd5b, 0xb5b6e10c,
|
||||
0x57fe3c00, 0xbaaaa15a, 0xe003ec3e, 0x9c269bae
|
||||
);
|
||||
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(
|
||||
0x2cca28fa, 0xfc614b80, 0x2a3db42b, 0x00ba00b1,
|
||||
0xbea8d943, 0xdace9ab2, 0x9536daea, 0x0074defb
|
||||
);
|
||||
static const int CURVE_B = 2;
|
||||
# else
|
||||
# error No known generator for the specified exhaustive test group order.
|
||||
# endif
|
||||
@ -68,7 +57,7 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
|
||||
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
|
||||
);
|
||||
|
||||
static const int CURVE_B = 7;
|
||||
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
|
||||
#endif
|
||||
|
||||
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
|
||||
@ -219,14 +208,13 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe x2, x3, c;
|
||||
secp256k1_fe x2, x3;
|
||||
r->x = *x;
|
||||
secp256k1_fe_sqr(&x2, x);
|
||||
secp256k1_fe_mul(&x3, x, &x2);
|
||||
r->infinity = 0;
|
||||
secp256k1_fe_set_int(&c, CURVE_B);
|
||||
secp256k1_fe_add(&c, &x3);
|
||||
return secp256k1_fe_sqrt(&r->y, &c);
|
||||
secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
|
||||
return secp256k1_fe_sqrt(&r->y, &x3);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
@ -269,36 +257,15 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
|
||||
return a->infinity;
|
||||
}
|
||||
|
||||
static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe y2, x3, z2, z6;
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
/** y^2 = x^3 + 7
|
||||
* (Y/Z^3)^2 = (X/Z^2)^3 + 7
|
||||
* Y^2 / Z^6 = X^3 / Z^6 + 7
|
||||
* Y^2 = X^3 + 7*Z^6
|
||||
*/
|
||||
secp256k1_fe_sqr(&y2, &a->y);
|
||||
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
|
||||
secp256k1_fe_sqr(&z2, &a->z);
|
||||
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
|
||||
secp256k1_fe_mul_int(&z6, CURVE_B);
|
||||
secp256k1_fe_add(&x3, &z6);
|
||||
secp256k1_fe_normalize_weak(&x3);
|
||||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
|
||||
secp256k1_fe y2, x3, c;
|
||||
secp256k1_fe y2, x3;
|
||||
if (a->infinity) {
|
||||
return 0;
|
||||
}
|
||||
/* y^2 = x^3 + 7 */
|
||||
secp256k1_fe_sqr(&y2, &a->y);
|
||||
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
|
||||
secp256k1_fe_set_int(&c, CURVE_B);
|
||||
secp256k1_fe_add(&x3, &c);
|
||||
secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
|
||||
secp256k1_fe_normalize_weak(&x3);
|
||||
return secp256k1_fe_equal_var(&y2, &x3);
|
||||
}
|
||||
@ -679,7 +646,6 @@ static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r,
|
||||
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
static const secp256k1_fe beta = SECP256K1_FE_CONST(
|
||||
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
|
||||
@ -688,7 +654,6 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
|
||||
*r = *a;
|
||||
secp256k1_fe_mul(&r->x, &r->x, &beta);
|
||||
}
|
||||
#endif
|
||||
|
||||
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
|
||||
secp256k1_fe yz;
|
||||
@ -704,4 +669,25 @@ static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
|
||||
return secp256k1_fe_is_quad_var(&yz);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
|
||||
#ifdef EXHAUSTIVE_TEST_ORDER
|
||||
secp256k1_gej out;
|
||||
int i;
|
||||
|
||||
/* A very simple EC multiplication ladder that avoids a dependecy on ecmult. */
|
||||
secp256k1_gej_set_infinity(&out);
|
||||
for (i = 0; i < 32; ++i) {
|
||||
secp256k1_gej_double_var(&out, &out, NULL);
|
||||
if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
|
||||
secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
|
||||
}
|
||||
}
|
||||
return secp256k1_gej_is_infinity(&out);
|
||||
#else
|
||||
(void)ge;
|
||||
/* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_GROUP_IMPL_H */
|
||||
|
@ -80,7 +80,7 @@ void test_ecdh_generator_basepoint(void) {
|
||||
/* compute "explicitly" */
|
||||
CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_UNCOMPRESSED) == 1);
|
||||
/* compare */
|
||||
CHECK(memcmp(output_ecdh, point_ser, 65) == 0);
|
||||
CHECK(secp256k1_memcmp_var(output_ecdh, point_ser, 65) == 0);
|
||||
|
||||
/* compute using ECDH function with default hash function */
|
||||
CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32, NULL, NULL) == 1);
|
||||
@ -90,7 +90,7 @@ void test_ecdh_generator_basepoint(void) {
|
||||
secp256k1_sha256_write(&sha, point_ser, point_ser_len);
|
||||
secp256k1_sha256_finalize(&sha, output_ser);
|
||||
/* compare */
|
||||
CHECK(memcmp(output_ecdh, output_ser, 32) == 0);
|
||||
CHECK(secp256k1_memcmp_var(output_ecdh, output_ser, 32) == 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
include_HEADERS += include/secp256k1_extrakeys.h
|
||||
noinst_HEADERS += src/modules/extrakeys/tests_impl.h
|
||||
noinst_HEADERS += src/modules/extrakeys/tests_exhaustive_impl.h
|
||||
noinst_HEADERS += src/modules/extrakeys/main_impl.h
|
||||
|
@ -33,6 +33,9 @@ int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_p
|
||||
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
|
||||
return 0;
|
||||
}
|
||||
if (!secp256k1_ge_is_in_correct_subgroup(&pk)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_xonly_pubkey_save(pubkey, &pk);
|
||||
return 1;
|
||||
}
|
||||
@ -121,7 +124,7 @@ int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const u
|
||||
secp256k1_fe_normalize_var(&pk.y);
|
||||
secp256k1_fe_get_b32(pk_expected32, &pk.x);
|
||||
|
||||
return memcmp(&pk_expected32, tweaked_pubkey32, 32) == 0
|
||||
return secp256k1_memcmp_var(&pk_expected32, tweaked_pubkey32, 32) == 0
|
||||
&& secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity;
|
||||
}
|
||||
|
||||
|
68
src/secp256k1/src/modules/extrakeys/tests_exhaustive_impl.h
Normal file
68
src/secp256k1/src/modules/extrakeys/tests_exhaustive_impl.h
Normal file
@ -0,0 +1,68 @@
|
||||
/**********************************************************************
|
||||
* Copyright (c) 2020 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_
|
||||
#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_
|
||||
|
||||
#include "src/modules/extrakeys/main_impl.h"
|
||||
#include "include/secp256k1_extrakeys.h"
|
||||
|
||||
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) {
|
||||
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
secp256k1_pubkey pubkey[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
int parities[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32];
|
||||
int i;
|
||||
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_fe fe;
|
||||
secp256k1_scalar scalar_i;
|
||||
unsigned char buf[33];
|
||||
int parity;
|
||||
|
||||
secp256k1_scalar_set_int(&scalar_i, i);
|
||||
secp256k1_scalar_get_b32(buf, &scalar_i);
|
||||
|
||||
/* Construct pubkey and keypair. */
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf));
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey[i - 1], buf));
|
||||
|
||||
/* Construct serialized xonly_pubkey from keypair. */
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parities[i - 1], &keypair[i - 1]));
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1]));
|
||||
|
||||
/* Parse the xonly_pubkey back and verify it matches the previously serialized value. */
|
||||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pubkey[i - 1], xonly_pubkey_bytes[i - 1]));
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1]));
|
||||
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0);
|
||||
|
||||
/* Construct the xonly_pubkey from the pubkey, and verify it matches the same. */
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pubkey[i - 1], &parity, &pubkey[i - 1]));
|
||||
CHECK(parity == parities[i - 1]);
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1]));
|
||||
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0);
|
||||
|
||||
/* Compare the xonly_pubkey bytes against the precomputed group. */
|
||||
secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]);
|
||||
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x));
|
||||
|
||||
/* Check the parity against the precomputed group. */
|
||||
fe = group[i].y;
|
||||
secp256k1_fe_normalize_var(&fe);
|
||||
CHECK(secp256k1_fe_is_odd(&fe) == parities[i - 1]);
|
||||
|
||||
/* Verify that the higher half is identical to the lower half mirrored. */
|
||||
if (i > EXHAUSTIVE_TEST_ORDER / 2) {
|
||||
CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - i - 1], 32) == 0);
|
||||
CHECK(parities[i - 1] == 1 - parities[EXHAUSTIVE_TEST_ORDER - i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
/* TODO: keypair/xonly_pubkey tweak tests */
|
||||
}
|
||||
|
||||
#endif
|
@ -35,9 +35,9 @@ void test_xonly_pubkey(void) {
|
||||
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
|
||||
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
||||
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
memset(ones32, 0xFF, 32);
|
||||
secp256k1_rand256(xy_sk);
|
||||
secp256k1_testrand256(xy_sk);
|
||||
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
|
||||
|
||||
@ -60,7 +60,7 @@ void test_xonly_pubkey(void) {
|
||||
sk[0] = 1;
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
|
||||
CHECK(memcmp(&pk, &xonly_pk, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&pk, &xonly_pk, sizeof(pk)) == 0);
|
||||
CHECK(pk_parity == 0);
|
||||
|
||||
/* Choose a secret key such that pubkey and xonly_pubkey are each others
|
||||
@ -68,7 +68,7 @@ void test_xonly_pubkey(void) {
|
||||
sk[0] = 2;
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
|
||||
CHECK(memcmp(&xonly_pk, &pk, sizeof(xonly_pk)) != 0);
|
||||
CHECK(secp256k1_memcmp_var(&xonly_pk, &pk, sizeof(xonly_pk)) != 0);
|
||||
CHECK(pk_parity == 1);
|
||||
secp256k1_pubkey_load(ctx, &pk1, &pk);
|
||||
secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk);
|
||||
@ -81,7 +81,7 @@ void test_xonly_pubkey(void) {
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0);
|
||||
CHECK(ecount == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0);
|
||||
CHECK(memcmp(buf32, zeros64, 32) == 0);
|
||||
CHECK(secp256k1_memcmp_var(buf32, zeros64, 32) == 0);
|
||||
CHECK(ecount == 2);
|
||||
{
|
||||
/* A pubkey filled with 0s will fail to serialize due to pubkey_load
|
||||
@ -104,28 +104,28 @@ void test_xonly_pubkey(void) {
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1);
|
||||
CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0);
|
||||
|
||||
/* Test parsing invalid field elements */
|
||||
memset(&xonly_pk, 1, sizeof(xonly_pk));
|
||||
/* Overflowing field element */
|
||||
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0);
|
||||
CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
||||
memset(&xonly_pk, 1, sizeof(xonly_pk));
|
||||
/* There's no point with x-coordinate 0 on secp256k1 */
|
||||
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0);
|
||||
CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
||||
/* If a random 32-byte string can not be parsed with ec_pubkey_parse
|
||||
* (because interpreted as X coordinate it does not correspond to a point on
|
||||
* the curve) then xonly_pubkey_parse should fail as well. */
|
||||
for (i = 0; i < count; i++) {
|
||||
unsigned char rand33[33];
|
||||
secp256k1_rand256(&rand33[1]);
|
||||
secp256k1_testrand256(&rand33[1]);
|
||||
rand33[0] = SECP256K1_TAG_PUBKEY_EVEN;
|
||||
if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) {
|
||||
memset(&xonly_pk, 1, sizeof(xonly_pk));
|
||||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0);
|
||||
CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
|
||||
} else {
|
||||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1);
|
||||
}
|
||||
@ -154,8 +154,8 @@ void test_xonly_pubkey_tweak(void) {
|
||||
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
||||
|
||||
memset(overflows, 0xff, sizeof(overflows));
|
||||
secp256k1_rand256(tweak);
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(tweak);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
|
||||
|
||||
@ -170,15 +170,15 @@ void test_xonly_pubkey_tweak(void) {
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0);
|
||||
CHECK(ecount == 4);
|
||||
/* NULL internal_xonly_pk zeroes the output_pk */
|
||||
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0);
|
||||
CHECK(ecount == 5);
|
||||
/* NULL tweak zeroes the output_pk */
|
||||
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
|
||||
/* Invalid tweak zeroes the output_pk */
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0);
|
||||
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
|
||||
/* A zero tweak is fine */
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1);
|
||||
@ -193,16 +193,16 @@ void test_xonly_pubkey_tweak(void) {
|
||||
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
|
||||
CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0)
|
||||
|| (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0));
|
||||
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
}
|
||||
|
||||
/* Invalid pk with a valid tweak */
|
||||
memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk));
|
||||
secp256k1_rand256(tweak);
|
||||
secp256k1_testrand256(tweak);
|
||||
ecount = 0;
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0);
|
||||
CHECK(ecount == 1);
|
||||
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
|
||||
secp256k1_context_destroy(none);
|
||||
secp256k1_context_destroy(sign);
|
||||
@ -228,8 +228,8 @@ void test_xonly_pubkey_tweak_check(void) {
|
||||
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
||||
|
||||
memset(overflows, 0xff, sizeof(overflows));
|
||||
secp256k1_rand256(tweak);
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(tweak);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
|
||||
|
||||
@ -268,7 +268,7 @@ void test_xonly_pubkey_tweak_check(void) {
|
||||
/* Overflowing tweak not allowed */
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0);
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0);
|
||||
CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
|
||||
CHECK(ecount == 5);
|
||||
|
||||
secp256k1_context_destroy(none);
|
||||
@ -287,7 +287,7 @@ void test_xonly_pubkey_tweak_recursive(void) {
|
||||
unsigned char tweak[N_PUBKEYS - 1][32];
|
||||
int i;
|
||||
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1);
|
||||
/* Add tweaks */
|
||||
for (i = 0; i < N_PUBKEYS - 1; i++) {
|
||||
@ -327,51 +327,51 @@ void test_keypair(void) {
|
||||
|
||||
/* Test keypair_create */
|
||||
ecount = 0;
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(none, &keypair, sk) == 0);
|
||||
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(ecount == 1);
|
||||
CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 0);
|
||||
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(ecount == 2);
|
||||
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0);
|
||||
CHECK(ecount == 3);
|
||||
CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0);
|
||||
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(ecount == 4);
|
||||
|
||||
/* Invalid secret key */
|
||||
CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0);
|
||||
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0);
|
||||
CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
|
||||
|
||||
/* Test keypair_pub */
|
||||
ecount = 0;
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
|
||||
CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0);
|
||||
CHECK(ecount == 1);
|
||||
CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0);
|
||||
CHECK(ecount == 2);
|
||||
CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
|
||||
|
||||
/* Using an invalid keypair is fine for keypair_pub */
|
||||
memset(&keypair, 0, sizeof(keypair));
|
||||
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
|
||||
CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
|
||||
|
||||
/* keypair holds the same pubkey as pubkey_create */
|
||||
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
|
||||
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1);
|
||||
CHECK(memcmp(&pk, &pk_tmp, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&pk, &pk_tmp, sizeof(pk)) == 0);
|
||||
|
||||
/** Test keypair_xonly_pub **/
|
||||
ecount = 0;
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0);
|
||||
@ -379,13 +379,13 @@ void test_keypair(void) {
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0);
|
||||
CHECK(ecount == 2);
|
||||
CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
|
||||
/* Using an invalid keypair will set the xonly_pk to 0 (first reset
|
||||
* xonly_pk). */
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
|
||||
memset(&keypair, 0, sizeof(keypair));
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0);
|
||||
CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
|
||||
CHECK(ecount == 3);
|
||||
|
||||
/** keypair holds the same xonly pubkey as pubkey_create **/
|
||||
@ -393,7 +393,7 @@ void test_keypair(void) {
|
||||
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
|
||||
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1);
|
||||
CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0);
|
||||
CHECK(pk_parity == pk_parity_tmp);
|
||||
|
||||
secp256k1_context_destroy(none);
|
||||
@ -414,8 +414,8 @@ void test_keypair_add(void) {
|
||||
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
|
||||
|
||||
CHECK(sizeof(zeros96) == sizeof(keypair));
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_rand256(tweak);
|
||||
secp256k1_testrand256(sk);
|
||||
secp256k1_testrand256(tweak);
|
||||
memset(overflows, 0xFF, 32);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
|
||||
@ -429,12 +429,12 @@ void test_keypair_add(void) {
|
||||
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0);
|
||||
CHECK(ecount == 4);
|
||||
/* This does not set the keypair to zeroes */
|
||||
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) != 0);
|
||||
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) != 0);
|
||||
|
||||
/* Invalid tweak zeroes the keypair */
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0);
|
||||
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
|
||||
|
||||
/* A zero tweak is fine */
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
@ -444,7 +444,7 @@ void test_keypair_add(void) {
|
||||
for (i = 0; i < count; i++) {
|
||||
secp256k1_scalar scalar_tweak;
|
||||
secp256k1_keypair keypair_tmp;
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
memcpy(&keypair_tmp, &keypair, sizeof(keypair));
|
||||
/* Because sk may be negated before adding, we need to try with tweak =
|
||||
@ -454,17 +454,17 @@ void test_keypair_add(void) {
|
||||
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
|
||||
CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0)
|
||||
|| (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0));
|
||||
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0
|
||||
|| memcmp(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0
|
||||
|| secp256k1_memcmp_var(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0);
|
||||
}
|
||||
|
||||
/* Invalid keypair with a valid tweak */
|
||||
memset(&keypair, 0, sizeof(keypair));
|
||||
secp256k1_rand256(tweak);
|
||||
secp256k1_testrand256(tweak);
|
||||
ecount = 0;
|
||||
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
|
||||
CHECK(ecount == 1);
|
||||
CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
|
||||
/* Only seckey part of keypair invalid */
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
memset(&keypair, 0, 32);
|
||||
@ -486,7 +486,7 @@ void test_keypair_add(void) {
|
||||
unsigned char pk32[32];
|
||||
int pk_parity;
|
||||
|
||||
secp256k1_rand256(tweak);
|
||||
secp256k1_testrand256(tweak);
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
|
||||
@ -498,11 +498,11 @@ void test_keypair_add(void) {
|
||||
/* Check that the resulting pubkey matches xonly_pubkey_tweak_add */
|
||||
CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1);
|
||||
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1);
|
||||
CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
|
||||
|
||||
/* Check that the secret key in the keypair is tweaked correctly */
|
||||
CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, &keypair.data[0]) == 1);
|
||||
CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
|
||||
}
|
||||
secp256k1_context_destroy(none);
|
||||
secp256k1_context_destroy(sign);
|
||||
|
@ -1,6 +1,7 @@
|
||||
include_HEADERS += include/secp256k1_recovery.h
|
||||
noinst_HEADERS += src/modules/recovery/main_impl.h
|
||||
noinst_HEADERS += src/modules/recovery/tests_impl.h
|
||||
noinst_HEADERS += src/modules/recovery/tests_exhaustive_impl.h
|
||||
if USE_BENCHMARK
|
||||
noinst_PROGRAMS += bench_recover
|
||||
bench_recover_SOURCES = src/bench_recover.c
|
||||
|
149
src/secp256k1/src/modules/recovery/tests_exhaustive_impl.h
Normal file
149
src/secp256k1/src/modules/recovery/tests_exhaustive_impl.h
Normal file
@ -0,0 +1,149 @@
|
||||
/**********************************************************************
|
||||
* Copyright (c) 2016 Andrew Poelstra *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H
|
||||
#define SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H
|
||||
|
||||
#include "src/modules/recovery/main_impl.h"
|
||||
#include "include/secp256k1_recovery.h"
|
||||
|
||||
void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group) {
|
||||
int i, j, k;
|
||||
uint64_t iter = 0;
|
||||
|
||||
/* Loop */
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */
|
||||
for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */
|
||||
if (skip_section(&iter)) continue;
|
||||
for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */
|
||||
const int starting_k = k;
|
||||
secp256k1_fe r_dot_y_normalized;
|
||||
secp256k1_ecdsa_recoverable_signature rsig;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
secp256k1_scalar sk, msg, r, s, expected_r;
|
||||
unsigned char sk32[32], msg32[32];
|
||||
int expected_recid;
|
||||
int recid;
|
||||
int overflow;
|
||||
secp256k1_scalar_set_int(&msg, i);
|
||||
secp256k1_scalar_set_int(&sk, j);
|
||||
secp256k1_scalar_get_b32(sk32, &sk);
|
||||
secp256k1_scalar_get_b32(msg32, &msg);
|
||||
|
||||
secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
|
||||
|
||||
/* Check directly */
|
||||
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
|
||||
r_from_k(&expected_r, group, k, &overflow);
|
||||
CHECK(r == expected_r);
|
||||
CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER ||
|
||||
(k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER);
|
||||
/* The recid's second bit is for conveying overflow (R.x value >= group order).
|
||||
* In the actual secp256k1 this is an astronomically unlikely event, but in the
|
||||
* small group used here, it will be the case for all points except the ones where
|
||||
* R.x=1 (which the group is specifically selected to have).
|
||||
* Note that this isn't actually useful; full recovery would need to convey
|
||||
* floor(R.x / group_order), but only one bit is used as that is sufficient
|
||||
* in the real group. */
|
||||
expected_recid = overflow ? 2 : 0;
|
||||
r_dot_y_normalized = group[k].y;
|
||||
secp256k1_fe_normalize(&r_dot_y_normalized);
|
||||
/* Also the recovery id is flipped depending if we hit the low-s branch */
|
||||
if ((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER) {
|
||||
expected_recid |= secp256k1_fe_is_odd(&r_dot_y_normalized);
|
||||
} else {
|
||||
expected_recid |= !secp256k1_fe_is_odd(&r_dot_y_normalized);
|
||||
}
|
||||
CHECK(recid == expected_recid);
|
||||
|
||||
/* Convert to a standard sig then check */
|
||||
secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
|
||||
secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
|
||||
/* Note that we compute expected_r *after* signing -- this is important
|
||||
* because our nonce-computing function function might change k during
|
||||
* signing. */
|
||||
r_from_k(&expected_r, group, k, NULL);
|
||||
CHECK(r == expected_r);
|
||||
CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER ||
|
||||
(k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER);
|
||||
|
||||
/* Overflow means we've tried every possible nonce */
|
||||
if (k < starting_k) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group) {
|
||||
/* This is essentially a copy of test_exhaustive_verify, with recovery added */
|
||||
int s, r, msg, key;
|
||||
uint64_t iter = 0;
|
||||
for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) {
|
||||
for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) {
|
||||
for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) {
|
||||
for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) {
|
||||
secp256k1_ge nonconst_ge;
|
||||
secp256k1_ecdsa_recoverable_signature rsig;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
secp256k1_pubkey pk;
|
||||
secp256k1_scalar sk_s, msg_s, r_s, s_s;
|
||||
secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
|
||||
int recid = 0;
|
||||
int k, should_verify;
|
||||
unsigned char msg32[32];
|
||||
|
||||
if (skip_section(&iter)) continue;
|
||||
|
||||
secp256k1_scalar_set_int(&s_s, s);
|
||||
secp256k1_scalar_set_int(&r_s, r);
|
||||
secp256k1_scalar_set_int(&msg_s, msg);
|
||||
secp256k1_scalar_set_int(&sk_s, key);
|
||||
secp256k1_scalar_get_b32(msg32, &msg_s);
|
||||
|
||||
/* Verify by hand */
|
||||
/* Run through every k value that gives us this r and check that *one* works.
|
||||
* Note there could be none, there could be multiple, ECDSA is weird. */
|
||||
should_verify = 0;
|
||||
for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
|
||||
secp256k1_scalar check_x_s;
|
||||
r_from_k(&check_x_s, group, k, NULL);
|
||||
if (r_s == check_x_s) {
|
||||
secp256k1_scalar_set_int(&s_times_k_s, k);
|
||||
secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
|
||||
secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
|
||||
secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
|
||||
should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
|
||||
}
|
||||
}
|
||||
/* nb we have a "high s" rule */
|
||||
should_verify &= !secp256k1_scalar_is_high(&s_s);
|
||||
|
||||
/* We would like to try recovering the pubkey and checking that it matches,
|
||||
* but pubkey recovery is impossible in the exhaustive tests (the reason
|
||||
* being that there are 12 nonzero r values, 12 nonzero points, and no
|
||||
* overlap between the sets, so there are no valid signatures). */
|
||||
|
||||
/* Verify by converting to a standard signature and calling verify */
|
||||
secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
|
||||
secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
|
||||
memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
|
||||
secp256k1_pubkey_save(&pk, &nonconst_ge);
|
||||
CHECK(should_verify ==
|
||||
secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void test_exhaustive_recovery(const secp256k1_context *ctx, const secp256k1_ge *group) {
|
||||
test_exhaustive_recovery_sign(ctx, group);
|
||||
test_exhaustive_recovery_verify(ctx, group);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H */
|
@ -25,7 +25,7 @@ static int recovery_test_nonce_function(unsigned char *nonce32, const unsigned c
|
||||
}
|
||||
/* On the next run, return a valid nonce, but flip a coin as to whether or not to fail signing. */
|
||||
memset(nonce32, 1, 32);
|
||||
return secp256k1_rand_bits(1);
|
||||
return secp256k1_testrand_bits(1);
|
||||
}
|
||||
|
||||
void test_ecdsa_recovery_api(void) {
|
||||
@ -184,7 +184,7 @@ void test_ecdsa_recovery_end_to_end(void) {
|
||||
CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1);
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
|
||||
CHECK(memcmp(&signature[4], &signature[0], 64) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&signature[4], &signature[0], 64) == 0);
|
||||
CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1);
|
||||
memset(&rsignature[4], 0, sizeof(rsignature[4]));
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
|
||||
@ -193,16 +193,16 @@ void test_ecdsa_recovery_end_to_end(void) {
|
||||
/* Parse compact (with recovery id) and recover. */
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
|
||||
CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1);
|
||||
CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) == 0);
|
||||
/* Serialize/destroy/parse signature and verify again. */
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1);
|
||||
sig[secp256k1_rand_bits(6)] += 1 + secp256k1_rand_int(255);
|
||||
sig[secp256k1_testrand_bits(6)] += 1 + secp256k1_testrand_int(255);
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1);
|
||||
CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1);
|
||||
CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0);
|
||||
/* Recover again */
|
||||
CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 ||
|
||||
memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
|
||||
secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) != 0);
|
||||
}
|
||||
|
||||
/* Tests several edge cases. */
|
||||
|
@ -1,6 +1,7 @@
|
||||
include_HEADERS += include/secp256k1_schnorrsig.h
|
||||
noinst_HEADERS += src/modules/schnorrsig/main_impl.h
|
||||
noinst_HEADERS += src/modules/schnorrsig/tests_impl.h
|
||||
noinst_HEADERS += src/modules/schnorrsig/tests_exhaustive_impl.h
|
||||
if USE_BENCHMARK
|
||||
noinst_PROGRAMS += bench_schnorrsig
|
||||
bench_schnorrsig_SOURCES = src/bench_schnorrsig.c
|
||||
|
@ -68,7 +68,7 @@ static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *ms
|
||||
/* Tag the hash with algo16 which is important to avoid nonce reuse across
|
||||
* algorithms. If this nonce function is used in BIP-340 signing as defined
|
||||
* in the spec, an optimized tagging implementation is used. */
|
||||
if (memcmp(algo16, bip340_algo16, 16) == 0) {
|
||||
if (secp256k1_memcmp_var(algo16, bip340_algo16, 16) == 0) {
|
||||
secp256k1_nonce_function_bip340_sha256_tagged(&sha);
|
||||
} else {
|
||||
int algo16_len = 16;
|
||||
@ -108,6 +108,22 @@ static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha) {
|
||||
sha->bytes = 64;
|
||||
}
|
||||
|
||||
static void secp256k1_schnorrsig_challenge(secp256k1_scalar* e, const unsigned char *r32, const unsigned char *msg32, const unsigned char *pubkey32)
|
||||
{
|
||||
unsigned char buf[32];
|
||||
secp256k1_sha256 sha;
|
||||
|
||||
/* tagged hash(r.x, pk.x, msg32) */
|
||||
secp256k1_schnorrsig_sha256_tagged(&sha);
|
||||
secp256k1_sha256_write(&sha, r32, 32);
|
||||
secp256k1_sha256_write(&sha, pubkey32, 32);
|
||||
secp256k1_sha256_write(&sha, msg32, 32);
|
||||
secp256k1_sha256_finalize(&sha, buf);
|
||||
/* Set scalar e to the challenge hash modulo the curve order as per
|
||||
* BIP340. */
|
||||
secp256k1_scalar_set_b32(e, buf, NULL);
|
||||
}
|
||||
|
||||
int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) {
|
||||
secp256k1_scalar sk;
|
||||
secp256k1_scalar e;
|
||||
@ -115,7 +131,6 @@ int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64
|
||||
secp256k1_gej rj;
|
||||
secp256k1_ge pk;
|
||||
secp256k1_ge r;
|
||||
secp256k1_sha256 sha;
|
||||
unsigned char buf[32] = { 0 };
|
||||
unsigned char pk_buf[32];
|
||||
unsigned char seckey[32];
|
||||
@ -159,16 +174,7 @@ int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64
|
||||
secp256k1_fe_normalize_var(&r.x);
|
||||
secp256k1_fe_get_b32(&sig64[0], &r.x);
|
||||
|
||||
/* tagged hash(r.x, pk.x, msg32) */
|
||||
secp256k1_schnorrsig_sha256_tagged(&sha);
|
||||
secp256k1_sha256_write(&sha, &sig64[0], 32);
|
||||
secp256k1_sha256_write(&sha, pk_buf, sizeof(pk_buf));
|
||||
secp256k1_sha256_write(&sha, msg32, 32);
|
||||
secp256k1_sha256_finalize(&sha, buf);
|
||||
|
||||
/* Set scalar e to the challenge hash modulo the curve order as per
|
||||
* BIP340. */
|
||||
secp256k1_scalar_set_b32(&e, buf, NULL);
|
||||
secp256k1_schnorrsig_challenge(&e, &sig64[0], msg32, pk_buf);
|
||||
secp256k1_scalar_mul(&e, &e, &sk);
|
||||
secp256k1_scalar_add(&e, &e, &k);
|
||||
secp256k1_scalar_get_b32(&sig64[32], &e);
|
||||
@ -189,7 +195,6 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha
|
||||
secp256k1_gej pkj;
|
||||
secp256k1_fe rx;
|
||||
secp256k1_ge r;
|
||||
secp256k1_sha256 sha;
|
||||
unsigned char buf[32];
|
||||
int overflow;
|
||||
|
||||
@ -212,13 +217,9 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha
|
||||
return 0;
|
||||
}
|
||||
|
||||
secp256k1_schnorrsig_sha256_tagged(&sha);
|
||||
secp256k1_sha256_write(&sha, &sig64[0], 32);
|
||||
/* Compute e. */
|
||||
secp256k1_fe_get_b32(buf, &pk.x);
|
||||
secp256k1_sha256_write(&sha, buf, sizeof(buf));
|
||||
secp256k1_sha256_write(&sha, msg32, 32);
|
||||
secp256k1_sha256_finalize(&sha, buf);
|
||||
secp256k1_scalar_set_b32(&e, buf, NULL);
|
||||
secp256k1_schnorrsig_challenge(&e, &sig64[0], msg32, buf);
|
||||
|
||||
/* Compute rj = s*G + (-e)*pkj */
|
||||
secp256k1_scalar_negate(&e, &e);
|
||||
|
206
src/secp256k1/src/modules/schnorrsig/tests_exhaustive_impl.h
Normal file
206
src/secp256k1/src/modules/schnorrsig/tests_exhaustive_impl.h
Normal file
@ -0,0 +1,206 @@
|
||||
/**********************************************************************
|
||||
* Copyright (c) 2020 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_
|
||||
#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_
|
||||
|
||||
#include "include/secp256k1_schnorrsig.h"
|
||||
#include "src/modules/schnorrsig/main_impl.h"
|
||||
|
||||
static const unsigned char invalid_pubkey_bytes[][32] = {
|
||||
/* 0 */
|
||||
{
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
},
|
||||
/* 2 */
|
||||
{
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
|
||||
},
|
||||
/* order */
|
||||
{
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 24) & 0xFF,
|
||||
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 16) & 0xFF,
|
||||
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 8) & 0xFF,
|
||||
(EXHAUSTIVE_TEST_ORDER + 0UL) & 0xFF
|
||||
},
|
||||
/* order + 1 */
|
||||
{
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 24) & 0xFF,
|
||||
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 16) & 0xFF,
|
||||
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 8) & 0xFF,
|
||||
(EXHAUSTIVE_TEST_ORDER + 1UL) & 0xFF
|
||||
},
|
||||
/* field size */
|
||||
{
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F
|
||||
},
|
||||
/* field size + 1 (note that 1 is legal) */
|
||||
{
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30
|
||||
},
|
||||
/* 2^256 - 1 */
|
||||
{
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
|
||||
}
|
||||
};
|
||||
|
||||
#define NUM_INVALID_KEYS (sizeof(invalid_pubkey_bytes) / sizeof(invalid_pubkey_bytes[0]))
|
||||
|
||||
static int secp256k1_hardened_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
|
||||
const unsigned char *key32, const unsigned char *xonly_pk32,
|
||||
const unsigned char *algo16, void* data) {
|
||||
secp256k1_scalar s;
|
||||
int *idata = data;
|
||||
(void)msg32;
|
||||
(void)key32;
|
||||
(void)xonly_pk32;
|
||||
(void)algo16;
|
||||
secp256k1_scalar_set_int(&s, *idata);
|
||||
secp256k1_scalar_get_b32(nonce32, &s);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, const secp256k1_xonly_pubkey* pubkeys, unsigned char (*xonly_pubkey_bytes)[32], const int* parities) {
|
||||
int d;
|
||||
uint64_t iter = 0;
|
||||
/* Iterate over the possible public keys to verify against (through their corresponding DL d). */
|
||||
for (d = 1; d <= EXHAUSTIVE_TEST_ORDER / 2; ++d) {
|
||||
int actual_d;
|
||||
unsigned k;
|
||||
unsigned char pk32[32];
|
||||
memcpy(pk32, xonly_pubkey_bytes[d - 1], 32);
|
||||
actual_d = parities[d - 1] ? EXHAUSTIVE_TEST_ORDER - d : d;
|
||||
/* Iterate over the possible valid first 32 bytes in the signature, through their corresponding DL k.
|
||||
Values above EXHAUSTIVE_TEST_ORDER/2 refer to the entries in invalid_pubkey_bytes. */
|
||||
for (k = 1; k <= EXHAUSTIVE_TEST_ORDER / 2 + NUM_INVALID_KEYS; ++k) {
|
||||
unsigned char sig64[64];
|
||||
int actual_k = -1;
|
||||
int e_done[EXHAUSTIVE_TEST_ORDER] = {0};
|
||||
int e_count_done = 0;
|
||||
if (skip_section(&iter)) continue;
|
||||
if (k <= EXHAUSTIVE_TEST_ORDER / 2) {
|
||||
memcpy(sig64, xonly_pubkey_bytes[k - 1], 32);
|
||||
actual_k = parities[k - 1] ? EXHAUSTIVE_TEST_ORDER - k : k;
|
||||
} else {
|
||||
memcpy(sig64, invalid_pubkey_bytes[k - 1 - EXHAUSTIVE_TEST_ORDER / 2], 32);
|
||||
}
|
||||
/* Randomly generate messages until all challenges have been hit. */
|
||||
while (e_count_done < EXHAUSTIVE_TEST_ORDER) {
|
||||
secp256k1_scalar e;
|
||||
unsigned char msg32[32];
|
||||
secp256k1_testrand256(msg32);
|
||||
secp256k1_schnorrsig_challenge(&e, sig64, msg32, pk32);
|
||||
/* Only do work if we hit a challenge we haven't tried before. */
|
||||
if (!e_done[e]) {
|
||||
/* Iterate over the possible valid last 32 bytes in the signature.
|
||||
0..order=that s value; order+1=random bytes */
|
||||
int count_valid = 0, s;
|
||||
for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) {
|
||||
int expect_valid, valid;
|
||||
if (s <= EXHAUSTIVE_TEST_ORDER) {
|
||||
secp256k1_scalar s_s;
|
||||
secp256k1_scalar_set_int(&s_s, s);
|
||||
secp256k1_scalar_get_b32(sig64 + 32, &s_s);
|
||||
expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER &&
|
||||
(s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER);
|
||||
} else {
|
||||
secp256k1_testrand256(sig64 + 32);
|
||||
expect_valid = 0;
|
||||
}
|
||||
valid = secp256k1_schnorrsig_verify(ctx, sig64, msg32, &pubkeys[d - 1]);
|
||||
CHECK(valid == expect_valid);
|
||||
count_valid += valid;
|
||||
}
|
||||
/* Exactly one s value must verify, unless R is illegal. */
|
||||
CHECK(count_valid == (actual_k != -1));
|
||||
/* Don't retry other messages that result in the same challenge. */
|
||||
e_done[e] = 1;
|
||||
++e_count_done;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void test_exhaustive_schnorrsig_sign(const secp256k1_context *ctx, unsigned char (*xonly_pubkey_bytes)[32], const secp256k1_keypair* keypairs, const int* parities) {
|
||||
int d, k;
|
||||
uint64_t iter = 0;
|
||||
/* Loop over keys. */
|
||||
for (d = 1; d < EXHAUSTIVE_TEST_ORDER; ++d) {
|
||||
int actual_d = d;
|
||||
if (parities[d - 1]) actual_d = EXHAUSTIVE_TEST_ORDER - d;
|
||||
/* Loop over nonces. */
|
||||
for (k = 1; k < EXHAUSTIVE_TEST_ORDER; ++k) {
|
||||
int e_done[EXHAUSTIVE_TEST_ORDER] = {0};
|
||||
int e_count_done = 0;
|
||||
unsigned char msg32[32];
|
||||
unsigned char sig64[64];
|
||||
int actual_k = k;
|
||||
if (skip_section(&iter)) continue;
|
||||
if (parities[k - 1]) actual_k = EXHAUSTIVE_TEST_ORDER - k;
|
||||
/* Generate random messages until all challenges have been tried. */
|
||||
while (e_count_done < EXHAUSTIVE_TEST_ORDER) {
|
||||
secp256k1_scalar e;
|
||||
secp256k1_testrand256(msg32);
|
||||
secp256k1_schnorrsig_challenge(&e, xonly_pubkey_bytes[k - 1], msg32, xonly_pubkey_bytes[d - 1]);
|
||||
/* Only do work if we hit a challenge we haven't tried before. */
|
||||
if (!e_done[e]) {
|
||||
secp256k1_scalar expected_s = (actual_k + e * actual_d) % EXHAUSTIVE_TEST_ORDER;
|
||||
unsigned char expected_s_bytes[32];
|
||||
secp256k1_scalar_get_b32(expected_s_bytes, &expected_s);
|
||||
/* Invoke the real function to construct a signature. */
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig64, msg32, &keypairs[d - 1], secp256k1_hardened_nonce_function_smallint, &k));
|
||||
/* The first 32 bytes must match the xonly pubkey for the specified k. */
|
||||
CHECK(secp256k1_memcmp_var(sig64, xonly_pubkey_bytes[k - 1], 32) == 0);
|
||||
/* The last 32 bytes must match the expected s value. */
|
||||
CHECK(secp256k1_memcmp_var(sig64 + 32, expected_s_bytes, 32) == 0);
|
||||
/* Don't retry other messages that result in the same challenge. */
|
||||
e_done[e] = 1;
|
||||
++e_count_done;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void test_exhaustive_schnorrsig(const secp256k1_context *ctx) {
|
||||
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
int parity[EXHAUSTIVE_TEST_ORDER - 1];
|
||||
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32];
|
||||
unsigned i;
|
||||
|
||||
/* Verify that all invalid_pubkey_bytes are actually invalid. */
|
||||
for (i = 0; i < NUM_INVALID_KEYS; ++i) {
|
||||
secp256k1_xonly_pubkey pk;
|
||||
CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk, invalid_pubkey_bytes[i]));
|
||||
}
|
||||
|
||||
/* Construct keypairs and xonly-pubkeys for the entire group. */
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; ++i) {
|
||||
secp256k1_scalar scalar_i;
|
||||
unsigned char buf[32];
|
||||
secp256k1_scalar_set_int(&scalar_i, i);
|
||||
secp256k1_scalar_get_b32(buf, &scalar_i);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf));
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parity[i - 1], &keypair[i - 1]));
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1]));
|
||||
}
|
||||
|
||||
test_exhaustive_schnorrsig_sign(ctx, xonly_pubkey_bytes, keypair, parity);
|
||||
test_exhaustive_schnorrsig_verify(ctx, xonly_pubkey, xonly_pubkey_bytes, parity);
|
||||
}
|
||||
|
||||
#endif
|
@ -15,9 +15,9 @@
|
||||
void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, size_t n_bytes) {
|
||||
unsigned char nonces[2][32];
|
||||
CHECK(nonce_function_bip340(nonces[0], args[0], args[1], args[2], args[3], args[4]) == 1);
|
||||
secp256k1_rand_flip(args[n_flip], n_bytes);
|
||||
secp256k1_testrand_flip(args[n_flip], n_bytes);
|
||||
CHECK(nonce_function_bip340(nonces[1], args[0], args[1], args[2], args[3], args[4]) == 1);
|
||||
CHECK(memcmp(nonces[0], nonces[1], 32) != 0);
|
||||
CHECK(secp256k1_memcmp_var(nonces[0], nonces[1], 32) != 0);
|
||||
}
|
||||
|
||||
/* Tests for the equality of two sha256 structs. This function only produces a
|
||||
@ -28,7 +28,7 @@ void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2)
|
||||
CHECK((sha1->bytes & 0x3F) == 0);
|
||||
|
||||
CHECK(sha1->bytes == sha2->bytes);
|
||||
CHECK(memcmp(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0);
|
||||
}
|
||||
|
||||
void run_nonce_function_bip340_tests(void) {
|
||||
@ -59,10 +59,10 @@ void run_nonce_function_bip340_tests(void) {
|
||||
secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha_optimized);
|
||||
test_sha256_eq(&sha, &sha_optimized);
|
||||
|
||||
secp256k1_rand256(msg);
|
||||
secp256k1_rand256(key);
|
||||
secp256k1_rand256(pk);
|
||||
secp256k1_rand256(aux_rand);
|
||||
secp256k1_testrand256(msg);
|
||||
secp256k1_testrand256(key);
|
||||
secp256k1_testrand256(pk);
|
||||
secp256k1_testrand256(aux_rand);
|
||||
|
||||
/* Check that a bitflip in an argument results in different nonces. */
|
||||
args[0] = msg;
|
||||
@ -124,10 +124,10 @@ void test_schnorrsig_api(void) {
|
||||
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
|
||||
secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
|
||||
|
||||
secp256k1_rand256(sk1);
|
||||
secp256k1_rand256(sk2);
|
||||
secp256k1_rand256(sk3);
|
||||
secp256k1_rand256(msg);
|
||||
secp256k1_testrand256(sk1);
|
||||
secp256k1_testrand256(sk2);
|
||||
secp256k1_testrand256(sk3);
|
||||
secp256k1_testrand256(msg);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypairs[0], sk1) == 1);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypairs[1], sk2) == 1);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypairs[2], sk3) == 1);
|
||||
@ -197,11 +197,11 @@ void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const un
|
||||
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, aux_rand));
|
||||
CHECK(memcmp(sig, expected_sig, 64) == 0);
|
||||
CHECK(secp256k1_memcmp_var(sig, expected_sig, 64) == 0);
|
||||
|
||||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk_expected, pk_serialized));
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair));
|
||||
CHECK(memcmp(&pk, &pk_expected, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(&pk, &pk_expected, sizeof(pk)) == 0);
|
||||
CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, &pk));
|
||||
}
|
||||
|
||||
@ -675,19 +675,19 @@ void test_schnorrsig_sign(void) {
|
||||
unsigned char sig[64];
|
||||
unsigned char zeros64[64] = { 0 };
|
||||
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1);
|
||||
|
||||
/* Test different nonce functions */
|
||||
memset(sig, 1, sizeof(sig));
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_failing, NULL) == 0);
|
||||
CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) == 0);
|
||||
memset(&sig, 1, sizeof(sig));
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_0, NULL) == 0);
|
||||
CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0);
|
||||
CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) == 0);
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_overflowing, NULL) == 1);
|
||||
CHECK(memcmp(sig, zeros64, sizeof(sig)) != 0);
|
||||
CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) != 0);
|
||||
}
|
||||
|
||||
#define N_SIGS 3
|
||||
@ -703,12 +703,12 @@ void test_schnorrsig_sign_verify(void) {
|
||||
secp256k1_xonly_pubkey pk;
|
||||
secp256k1_scalar s;
|
||||
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk));
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair));
|
||||
|
||||
for (i = 0; i < N_SIGS; i++) {
|
||||
secp256k1_rand256(msg[i]);
|
||||
secp256k1_testrand256(msg[i]);
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig[i], msg[i], &keypair, NULL, NULL));
|
||||
CHECK(secp256k1_schnorrsig_verify(ctx, sig[i], msg[i], &pk));
|
||||
}
|
||||
@ -716,19 +716,19 @@ void test_schnorrsig_sign_verify(void) {
|
||||
{
|
||||
/* Flip a few bits in the signature and in the message and check that
|
||||
* verify and verify_batch (TODO) fail */
|
||||
size_t sig_idx = secp256k1_rand_int(N_SIGS);
|
||||
size_t byte_idx = secp256k1_rand_int(32);
|
||||
unsigned char xorbyte = secp256k1_rand_int(254)+1;
|
||||
size_t sig_idx = secp256k1_testrand_int(N_SIGS);
|
||||
size_t byte_idx = secp256k1_testrand_int(32);
|
||||
unsigned char xorbyte = secp256k1_testrand_int(254)+1;
|
||||
sig[sig_idx][byte_idx] ^= xorbyte;
|
||||
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
|
||||
sig[sig_idx][byte_idx] ^= xorbyte;
|
||||
|
||||
byte_idx = secp256k1_rand_int(32);
|
||||
byte_idx = secp256k1_testrand_int(32);
|
||||
sig[sig_idx][32+byte_idx] ^= xorbyte;
|
||||
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
|
||||
sig[sig_idx][32+byte_idx] ^= xorbyte;
|
||||
|
||||
byte_idx = secp256k1_rand_int(32);
|
||||
byte_idx = secp256k1_testrand_int(32);
|
||||
msg[sig_idx][byte_idx] ^= xorbyte;
|
||||
CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk));
|
||||
msg[sig_idx][byte_idx] ^= xorbyte;
|
||||
@ -766,7 +766,7 @@ void test_schnorrsig_taproot(void) {
|
||||
unsigned char sig[64];
|
||||
|
||||
/* Create output key */
|
||||
secp256k1_rand256(sk);
|
||||
secp256k1_testrand256(sk);
|
||||
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
|
||||
CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
|
||||
/* In actual taproot the tweak would be hash of internal_pk */
|
||||
@ -776,7 +776,7 @@ void test_schnorrsig_taproot(void) {
|
||||
CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk_bytes, &output_pk) == 1);
|
||||
|
||||
/* Key spend */
|
||||
secp256k1_rand256(msg);
|
||||
secp256k1_testrand256(msg);
|
||||
CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1);
|
||||
/* Verify key spend */
|
||||
CHECK(secp256k1_xonly_pubkey_parse(ctx, &output_pk, output_pk_bytes) == 1);
|
||||
|
@ -102,12 +102,11 @@ static void secp256k1_scalar_order_get_num(secp256k1_num *r);
|
||||
/** Compare two scalars. */
|
||||
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/** Find r1 and r2 such that r1+r2*2^128 = a. */
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
|
||||
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
|
||||
#endif
|
||||
/** Find r1 and r2 such that r1+r2*2^128 = k. */
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k);
|
||||
/** Find r1 and r2 such that r1+r2*lambda = k,
|
||||
* where r1 and r2 or their negations are maximum 128 bits long (see secp256k1_ge_mul_lambda). */
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k);
|
||||
|
||||
/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
|
||||
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
|
||||
|
@ -912,18 +912,16 @@ static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a)
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
r1->d[0] = a->d[0];
|
||||
r1->d[1] = a->d[1];
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
r1->d[0] = k->d[0];
|
||||
r1->d[1] = k->d[1];
|
||||
r1->d[2] = 0;
|
||||
r1->d[3] = 0;
|
||||
r2->d[0] = a->d[2];
|
||||
r2->d[1] = a->d[3];
|
||||
r2->d[0] = k->d[2];
|
||||
r2->d[1] = k->d[3];
|
||||
r2->d[2] = 0;
|
||||
r2->d[3] = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
|
||||
|
@ -672,26 +672,24 @@ static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a)
|
||||
secp256k1_scalar_reduce_512(r, l);
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
r1->d[0] = a->d[0];
|
||||
r1->d[1] = a->d[1];
|
||||
r1->d[2] = a->d[2];
|
||||
r1->d[3] = a->d[3];
|
||||
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
r1->d[0] = k->d[0];
|
||||
r1->d[1] = k->d[1];
|
||||
r1->d[2] = k->d[2];
|
||||
r1->d[3] = k->d[3];
|
||||
r1->d[4] = 0;
|
||||
r1->d[5] = 0;
|
||||
r1->d[6] = 0;
|
||||
r1->d[7] = 0;
|
||||
r2->d[0] = a->d[4];
|
||||
r2->d[1] = a->d[5];
|
||||
r2->d[2] = a->d[6];
|
||||
r2->d[3] = a->d[7];
|
||||
r2->d[0] = k->d[4];
|
||||
r2->d[1] = k->d[5];
|
||||
r2->d[2] = k->d[6];
|
||||
r2->d[3] = k->d[7];
|
||||
r2->d[4] = 0;
|
||||
r2->d[5] = 0;
|
||||
r2->d[6] = 0;
|
||||
r2->d[7] = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
|
||||
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
|
||||
|
@ -7,6 +7,10 @@
|
||||
#ifndef SECP256K1_SCALAR_IMPL_H
|
||||
#define SECP256K1_SCALAR_IMPL_H
|
||||
|
||||
#ifdef VERIFY
|
||||
#include <string.h>
|
||||
#endif
|
||||
|
||||
#include "scalar.h"
|
||||
#include "util.h"
|
||||
|
||||
@ -252,37 +256,65 @@ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_sc
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
/* These parameters are generated using sage/gen_exhaustive_groups.sage. */
|
||||
#if defined(EXHAUSTIVE_TEST_ORDER)
|
||||
# if EXHAUSTIVE_TEST_ORDER == 13
|
||||
# define EXHAUSTIVE_TEST_LAMBDA 9
|
||||
# elif EXHAUSTIVE_TEST_ORDER == 199
|
||||
# define EXHAUSTIVE_TEST_LAMBDA 92
|
||||
# else
|
||||
# error No known lambda for the specified exhaustive test group order.
|
||||
# endif
|
||||
|
||||
/**
|
||||
* Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
|
||||
* full case we don't bother making k1 and k2 be small, we just want them to be
|
||||
* Find r1 and r2 given k, such that r1 + r2 * lambda == k mod n; unlike in the
|
||||
* full case we don't bother making r1 and r2 be small, we just want them to be
|
||||
* nontrivial to get full test coverage for the exhaustive tests. We therefore
|
||||
* (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
|
||||
* (arbitrarily) set r2 = k + 5 (mod n) and r1 = k - r2 * lambda (mod n).
|
||||
*/
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
*r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
|
||||
*r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
*r2 = (*k + 5) % EXHAUSTIVE_TEST_ORDER;
|
||||
*r1 = (*k + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
|
||||
* lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
|
||||
* 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
|
||||
* lambda is: */
|
||||
static const secp256k1_scalar secp256k1_const_lambda = SECP256K1_SCALAR_CONST(
|
||||
0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL,
|
||||
0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL
|
||||
);
|
||||
|
||||
#ifdef VERIFY
|
||||
static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and
|
||||
* beta^3 == 1 mod p, where n is the curve order and p is the field order.
|
||||
*
|
||||
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
|
||||
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
|
||||
* and k2 have a small size.
|
||||
* It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
|
||||
* Futhermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are
|
||||
* roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p.
|
||||
* (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.)
|
||||
*
|
||||
* Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring
|
||||
* homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi
|
||||
* is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a
|
||||
* reduced basis {a1 + b1*l, a2 + b2*l} where
|
||||
*
|
||||
* - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
|
||||
* - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
|
||||
* - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
|
||||
* - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
|
||||
*
|
||||
* The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
|
||||
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
|
||||
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
|
||||
* and k2 are small in absolute value.
|
||||
*
|
||||
* The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives
|
||||
* k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
|
||||
* compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
|
||||
* compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for
|
||||
* the constants a1 and a2.
|
||||
*
|
||||
* g1, g2 are precomputed constants used to replace division with a rounded multiplication
|
||||
* when decomposing the scalar for an endomorphism-based point multiplication.
|
||||
@ -294,21 +326,21 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
|
||||
* Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
|
||||
* Section 4.3 (here we use a somewhat higher-precision estimate):
|
||||
* d = a1*b2 - b1*a2
|
||||
* g1 = round((2^272)*b2/d)
|
||||
* g2 = round((2^272)*b1/d)
|
||||
* g1 = round(2^384 * b2/d)
|
||||
* g2 = round(2^384 * (-b1)/d)
|
||||
*
|
||||
* (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
|
||||
* as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
|
||||
* (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2]
|
||||
* can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda).
|
||||
*
|
||||
* The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
|
||||
* The function below splits k into r1 and r2, such that
|
||||
* - r1 + lambda * r2 == k (mod n)
|
||||
* - either r1 < 2^128 or -r1 mod n < 2^128
|
||||
* - either r2 < 2^128 or -r2 mod n < 2^128
|
||||
*
|
||||
* See proof below.
|
||||
*/
|
||||
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
|
||||
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
secp256k1_scalar c1, c2;
|
||||
static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
|
||||
0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
|
||||
0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
|
||||
);
|
||||
static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
|
||||
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
|
||||
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
|
||||
@ -318,25 +350,167 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
|
||||
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
|
||||
);
|
||||
static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
|
||||
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
|
||||
0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
|
||||
0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL,
|
||||
0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL
|
||||
);
|
||||
static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
|
||||
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
|
||||
0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
|
||||
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL,
|
||||
0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL
|
||||
);
|
||||
VERIFY_CHECK(r1 != a);
|
||||
VERIFY_CHECK(r2 != a);
|
||||
VERIFY_CHECK(r1 != k);
|
||||
VERIFY_CHECK(r2 != k);
|
||||
/* these _var calls are constant time since the shift amount is constant */
|
||||
secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
|
||||
secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
|
||||
secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384);
|
||||
secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384);
|
||||
secp256k1_scalar_mul(&c1, &c1, &minus_b1);
|
||||
secp256k1_scalar_mul(&c2, &c2, &minus_b2);
|
||||
secp256k1_scalar_add(r2, &c1, &c2);
|
||||
secp256k1_scalar_mul(r1, r2, &minus_lambda);
|
||||
secp256k1_scalar_add(r1, r1, a);
|
||||
secp256k1_scalar_mul(r1, r2, &secp256k1_const_lambda);
|
||||
secp256k1_scalar_negate(r1, r1);
|
||||
secp256k1_scalar_add(r1, r1, k);
|
||||
|
||||
#ifdef VERIFY
|
||||
secp256k1_scalar_split_lambda_verify(r1, r2, k);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef VERIFY
|
||||
/*
|
||||
* Proof for secp256k1_scalar_split_lambda's bounds.
|
||||
*
|
||||
* Let
|
||||
* - epsilon1 = 2^256 * |g1/2^384 - b2/d|
|
||||
* - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d|
|
||||
* - c1 = round(k*g1/2^384)
|
||||
* - c2 = round(k*g2/2^384)
|
||||
*
|
||||
* Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1
|
||||
*
|
||||
* |c1 - k*b2/d|
|
||||
* =
|
||||
* |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d|
|
||||
* <= {triangle inequality}
|
||||
* |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d|
|
||||
* =
|
||||
* |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d|
|
||||
* < {rounding in c1 and 0 <= k < 2^256}
|
||||
* 2^-1 + 2^256 * |g1/2^384 - b2/d|
|
||||
* = {definition of epsilon1}
|
||||
* 2^-1 + epsilon1
|
||||
*
|
||||
* Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2
|
||||
*
|
||||
* |c2 - k*(-b1)/d|
|
||||
* =
|
||||
* |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d|
|
||||
* <= {triangle inequality}
|
||||
* |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d|
|
||||
* =
|
||||
* |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d|
|
||||
* < {rounding in c2 and 0 <= k < 2^256}
|
||||
* 2^-1 + 2^256 * |g2/2^384 - (-b1)/d|
|
||||
* = {definition of epsilon2}
|
||||
* 2^-1 + epsilon2
|
||||
*
|
||||
* Let
|
||||
* - k1 = k - c1*a1 - c2*a2
|
||||
* - k2 = - c1*b1 - c2*b2
|
||||
*
|
||||
* Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128
|
||||
*
|
||||
* |k1|
|
||||
* = {definition of k1}
|
||||
* |k - c1*a1 - c2*a2|
|
||||
* = {(a1*b2 - b1*a2)/n = 1}
|
||||
* |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2|
|
||||
* =
|
||||
* |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)|
|
||||
* <= {triangle inequality}
|
||||
* a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2|
|
||||
* < {Lemma 1 and Lemma 2}
|
||||
* a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2)
|
||||
* < {rounding up to an integer}
|
||||
* (a1 + a2 + 1)/2
|
||||
* < {rounding up to a power of 2}
|
||||
* 2^128
|
||||
*
|
||||
* Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128
|
||||
*
|
||||
* |k2|
|
||||
* = {definition of k2}
|
||||
* |- c1*a1 - c2*a2|
|
||||
* = {(b1*b2 - b1*b2)/n = 0}
|
||||
* |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2|
|
||||
* =
|
||||
* |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)|
|
||||
* <= {triangle inequality}
|
||||
* (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2|
|
||||
* < {Lemma 1 and Lemma 2}
|
||||
* (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2)
|
||||
* < {rounding up to an integer}
|
||||
* (-b1 + b2)/2 + 1
|
||||
* < {rounding up to a power of 2}
|
||||
* 2^128
|
||||
*
|
||||
* Let
|
||||
* - r2 = k2 mod n
|
||||
* - r1 = k - r2*lambda mod n.
|
||||
*
|
||||
* Notice that r1 is defined such that r1 + r2 * lambda == k (mod n).
|
||||
*
|
||||
* Lemma 5: r1 == k1 mod n.
|
||||
*
|
||||
* r1
|
||||
* == {definition of r1 and r2}
|
||||
* k - k2*lambda
|
||||
* == {definition of k2}
|
||||
* k - (- c1*b1 - c2*b2)*lambda
|
||||
* ==
|
||||
* k + c1*b1*lambda + c2*b2*lambda
|
||||
* == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n}
|
||||
* k - c1*a1 - c2*a2
|
||||
* == {definition of k1}
|
||||
* k1
|
||||
*
|
||||
* From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that
|
||||
*
|
||||
* - either r1 < 2^128 or -r1 mod n < 2^128
|
||||
* - either r2 < 2^128 or -r2 mod n < 2^128.
|
||||
*
|
||||
* Q.E.D.
|
||||
*/
|
||||
static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) {
|
||||
secp256k1_scalar s;
|
||||
unsigned char buf1[32];
|
||||
unsigned char buf2[32];
|
||||
|
||||
/* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */
|
||||
static const unsigned char k1_bound[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77
|
||||
};
|
||||
|
||||
/* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */
|
||||
static const unsigned char k2_bound[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed
|
||||
};
|
||||
|
||||
secp256k1_scalar_mul(&s, &secp256k1_const_lambda, r2);
|
||||
secp256k1_scalar_add(&s, &s, r1);
|
||||
VERIFY_CHECK(secp256k1_scalar_eq(&s, k));
|
||||
|
||||
secp256k1_scalar_negate(&s, r1);
|
||||
secp256k1_scalar_get_b32(buf1, r1);
|
||||
secp256k1_scalar_get_b32(buf2, &s);
|
||||
VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0);
|
||||
|
||||
secp256k1_scalar_negate(&s, r2);
|
||||
secp256k1_scalar_get_b32(buf1, r2);
|
||||
secp256k1_scalar_get_b32(buf2, &s);
|
||||
VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0);
|
||||
}
|
||||
#endif /* VERIFY */
|
||||
#endif /* !defined(EXHAUSTIVE_TEST_ORDER) */
|
||||
|
||||
#endif /* SECP256K1_SCALAR_IMPL_H */
|
||||
|
@ -48,14 +48,17 @@ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
|
||||
const int base = 0x100 % EXHAUSTIVE_TEST_ORDER;
|
||||
int i;
|
||||
int over = 0;
|
||||
*r = 0;
|
||||
for (i = 0; i < 32; i++) {
|
||||
*r = ((*r * base) + b32[i]) % EXHAUSTIVE_TEST_ORDER;
|
||||
*r = (*r * 0x100) + b32[i];
|
||||
if (*r >= EXHAUSTIVE_TEST_ORDER) {
|
||||
over = 1;
|
||||
*r %= EXHAUSTIVE_TEST_ORDER;
|
||||
}
|
||||
}
|
||||
/* just deny overflow, it basically always happens */
|
||||
if (overflow) *overflow = 0;
|
||||
if (overflow) *overflow = over;
|
||||
}
|
||||
|
||||
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
|
||||
|
@ -26,7 +26,7 @@ static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* err
|
||||
static void secp256k1_scratch_destroy(const secp256k1_callback* error_callback, secp256k1_scratch* scratch) {
|
||||
if (scratch != NULL) {
|
||||
VERIFY_CHECK(scratch->alloc_size == 0); /* all checkpoints should be applied */
|
||||
if (memcmp(scratch->magic, "scratch", 8) != 0) {
|
||||
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
|
||||
secp256k1_callback_call(error_callback, "invalid scratch space");
|
||||
return;
|
||||
}
|
||||
@ -36,7 +36,7 @@ static void secp256k1_scratch_destroy(const secp256k1_callback* error_callback,
|
||||
}
|
||||
|
||||
static size_t secp256k1_scratch_checkpoint(const secp256k1_callback* error_callback, const secp256k1_scratch* scratch) {
|
||||
if (memcmp(scratch->magic, "scratch", 8) != 0) {
|
||||
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
|
||||
secp256k1_callback_call(error_callback, "invalid scratch space");
|
||||
return 0;
|
||||
}
|
||||
@ -44,7 +44,7 @@ static size_t secp256k1_scratch_checkpoint(const secp256k1_callback* error_callb
|
||||
}
|
||||
|
||||
static void secp256k1_scratch_apply_checkpoint(const secp256k1_callback* error_callback, secp256k1_scratch* scratch, size_t checkpoint) {
|
||||
if (memcmp(scratch->magic, "scratch", 8) != 0) {
|
||||
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
|
||||
secp256k1_callback_call(error_callback, "invalid scratch space");
|
||||
return;
|
||||
}
|
||||
@ -56,7 +56,7 @@ static void secp256k1_scratch_apply_checkpoint(const secp256k1_callback* error_c
|
||||
}
|
||||
|
||||
static size_t secp256k1_scratch_max_allocation(const secp256k1_callback* error_callback, const secp256k1_scratch* scratch, size_t objects) {
|
||||
if (memcmp(scratch->magic, "scratch", 8) != 0) {
|
||||
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
|
||||
secp256k1_callback_call(error_callback, "invalid scratch space");
|
||||
return 0;
|
||||
}
|
||||
@ -81,7 +81,7 @@ static void *secp256k1_scratch_alloc(const secp256k1_callback* error_callback, s
|
||||
}
|
||||
size = rounded_size;
|
||||
|
||||
if (memcmp(scratch->magic, "scratch", 8) != 0) {
|
||||
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
|
||||
secp256k1_callback_call(error_callback, "invalid scratch space");
|
||||
return NULL;
|
||||
}
|
||||
|
@ -284,6 +284,9 @@ int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pu
|
||||
if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
|
||||
return 0;
|
||||
}
|
||||
if (!secp256k1_ge_is_in_correct_subgroup(&Q)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_pubkey_save(pubkey, &Q);
|
||||
secp256k1_ge_clear(&Q);
|
||||
return 1;
|
||||
|
@ -22,7 +22,7 @@ static int secp256k1_selftest_sha256(void) {
|
||||
secp256k1_sha256_initialize(&hasher);
|
||||
secp256k1_sha256_write(&hasher, (const unsigned char*)input63, 63);
|
||||
secp256k1_sha256_finalize(&hasher, out);
|
||||
return memcmp(out, output32, 32) == 0;
|
||||
return secp256k1_memcmp_var(out, output32, 32) == 0;
|
||||
}
|
||||
|
||||
static int secp256k1_selftest(void) {
|
||||
|
@ -14,28 +14,34 @@
|
||||
/* A non-cryptographic RNG used only for test infrastructure. */
|
||||
|
||||
/** Seed the pseudorandom number generator for testing. */
|
||||
SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16);
|
||||
SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16);
|
||||
|
||||
/** Generate a pseudorandom number in the range [0..2**32-1]. */
|
||||
static uint32_t secp256k1_rand32(void);
|
||||
static uint32_t secp256k1_testrand32(void);
|
||||
|
||||
/** Generate a pseudorandom number in the range [0..2**bits-1]. Bits must be 1 or
|
||||
* more. */
|
||||
static uint32_t secp256k1_rand_bits(int bits);
|
||||
static uint32_t secp256k1_testrand_bits(int bits);
|
||||
|
||||
/** Generate a pseudorandom number in the range [0..range-1]. */
|
||||
static uint32_t secp256k1_rand_int(uint32_t range);
|
||||
static uint32_t secp256k1_testrand_int(uint32_t range);
|
||||
|
||||
/** Generate a pseudorandom 32-byte array. */
|
||||
static void secp256k1_rand256(unsigned char *b32);
|
||||
static void secp256k1_testrand256(unsigned char *b32);
|
||||
|
||||
/** Generate a pseudorandom 32-byte array with long sequences of zero and one bits. */
|
||||
static void secp256k1_rand256_test(unsigned char *b32);
|
||||
static void secp256k1_testrand256_test(unsigned char *b32);
|
||||
|
||||
/** Generate pseudorandom bytes with long sequences of zero and one bits. */
|
||||
static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len);
|
||||
static void secp256k1_testrand_bytes_test(unsigned char *bytes, size_t len);
|
||||
|
||||
/** Flip a single random bit in a byte array */
|
||||
static void secp256k1_rand_flip(unsigned char *b, size_t len);
|
||||
static void secp256k1_testrand_flip(unsigned char *b, size_t len);
|
||||
|
||||
/** Initialize the test RNG using (hex encoded) array up to 16 bytes, or randomly if hexseed is NULL. */
|
||||
static void secp256k1_testrand_init(const char* hexseed);
|
||||
|
||||
/** Print final test information. */
|
||||
static void secp256k1_testrand_finish(void);
|
||||
|
||||
#endif /* SECP256K1_TESTRAND_H */
|
||||
|
@ -8,6 +8,7 @@
|
||||
#define SECP256K1_TESTRAND_IMPL_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "testrand.h"
|
||||
@ -19,11 +20,11 @@ static int secp256k1_test_rng_precomputed_used = 8;
|
||||
static uint64_t secp256k1_test_rng_integer;
|
||||
static int secp256k1_test_rng_integer_bits_left = 0;
|
||||
|
||||
SECP256K1_INLINE static void secp256k1_rand_seed(const unsigned char *seed16) {
|
||||
SECP256K1_INLINE static void secp256k1_testrand_seed(const unsigned char *seed16) {
|
||||
secp256k1_rfc6979_hmac_sha256_initialize(&secp256k1_test_rng, seed16, 16);
|
||||
}
|
||||
|
||||
SECP256K1_INLINE static uint32_t secp256k1_rand32(void) {
|
||||
SECP256K1_INLINE static uint32_t secp256k1_testrand32(void) {
|
||||
if (secp256k1_test_rng_precomputed_used == 8) {
|
||||
secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, (unsigned char*)(&secp256k1_test_rng_precomputed[0]), sizeof(secp256k1_test_rng_precomputed));
|
||||
secp256k1_test_rng_precomputed_used = 0;
|
||||
@ -31,10 +32,10 @@ SECP256K1_INLINE static uint32_t secp256k1_rand32(void) {
|
||||
return secp256k1_test_rng_precomputed[secp256k1_test_rng_precomputed_used++];
|
||||
}
|
||||
|
||||
static uint32_t secp256k1_rand_bits(int bits) {
|
||||
static uint32_t secp256k1_testrand_bits(int bits) {
|
||||
uint32_t ret;
|
||||
if (secp256k1_test_rng_integer_bits_left < bits) {
|
||||
secp256k1_test_rng_integer |= (((uint64_t)secp256k1_rand32()) << secp256k1_test_rng_integer_bits_left);
|
||||
secp256k1_test_rng_integer |= (((uint64_t)secp256k1_testrand32()) << secp256k1_test_rng_integer_bits_left);
|
||||
secp256k1_test_rng_integer_bits_left += 32;
|
||||
}
|
||||
ret = secp256k1_test_rng_integer;
|
||||
@ -44,7 +45,7 @@ static uint32_t secp256k1_rand_bits(int bits) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
static uint32_t secp256k1_rand_int(uint32_t range) {
|
||||
static uint32_t secp256k1_testrand_int(uint32_t range) {
|
||||
/* We want a uniform integer between 0 and range-1, inclusive.
|
||||
* B is the smallest number such that range <= 2**B.
|
||||
* two mechanisms implemented here:
|
||||
@ -76,25 +77,25 @@ static uint32_t secp256k1_rand_int(uint32_t range) {
|
||||
mult = 1;
|
||||
}
|
||||
while(1) {
|
||||
uint32_t x = secp256k1_rand_bits(bits);
|
||||
uint32_t x = secp256k1_testrand_bits(bits);
|
||||
if (x < trange) {
|
||||
return (mult == 1) ? x : (x % range);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_rand256(unsigned char *b32) {
|
||||
static void secp256k1_testrand256(unsigned char *b32) {
|
||||
secp256k1_rfc6979_hmac_sha256_generate(&secp256k1_test_rng, b32, 32);
|
||||
}
|
||||
|
||||
static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len) {
|
||||
static void secp256k1_testrand_bytes_test(unsigned char *bytes, size_t len) {
|
||||
size_t bits = 0;
|
||||
memset(bytes, 0, len);
|
||||
while (bits < len * 8) {
|
||||
int now;
|
||||
uint32_t val;
|
||||
now = 1 + (secp256k1_rand_bits(6) * secp256k1_rand_bits(5) + 16) / 31;
|
||||
val = secp256k1_rand_bits(1);
|
||||
now = 1 + (secp256k1_testrand_bits(6) * secp256k1_testrand_bits(5) + 16) / 31;
|
||||
val = secp256k1_testrand_bits(1);
|
||||
while (now > 0 && bits < len * 8) {
|
||||
bytes[bits / 8] |= val << (bits % 8);
|
||||
now--;
|
||||
@ -103,12 +104,55 @@ static void secp256k1_rand_bytes_test(unsigned char *bytes, size_t len) {
|
||||
}
|
||||
}
|
||||
|
||||
static void secp256k1_rand256_test(unsigned char *b32) {
|
||||
secp256k1_rand_bytes_test(b32, 32);
|
||||
static void secp256k1_testrand256_test(unsigned char *b32) {
|
||||
secp256k1_testrand_bytes_test(b32, 32);
|
||||
}
|
||||
|
||||
static void secp256k1_rand_flip(unsigned char *b, size_t len) {
|
||||
b[secp256k1_rand_int(len)] ^= (1 << secp256k1_rand_int(8));
|
||||
static void secp256k1_testrand_flip(unsigned char *b, size_t len) {
|
||||
b[secp256k1_testrand_int(len)] ^= (1 << secp256k1_testrand_int(8));
|
||||
}
|
||||
|
||||
static void secp256k1_testrand_init(const char* hexseed) {
|
||||
unsigned char seed16[16] = {0};
|
||||
if (hexseed && strlen(hexseed) != 0) {
|
||||
int pos = 0;
|
||||
while (pos < 16 && hexseed[0] != 0 && hexseed[1] != 0) {
|
||||
unsigned short sh;
|
||||
if ((sscanf(hexseed, "%2hx", &sh)) == 1) {
|
||||
seed16[pos] = sh;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
hexseed += 2;
|
||||
pos++;
|
||||
}
|
||||
} else {
|
||||
FILE *frand = fopen("/dev/urandom", "r");
|
||||
if ((frand == NULL) || fread(&seed16, 1, sizeof(seed16), frand) != sizeof(seed16)) {
|
||||
uint64_t t = time(NULL) * (uint64_t)1337;
|
||||
fprintf(stderr, "WARNING: could not read 16 bytes from /dev/urandom; falling back to insecure PRNG\n");
|
||||
seed16[0] ^= t;
|
||||
seed16[1] ^= t >> 8;
|
||||
seed16[2] ^= t >> 16;
|
||||
seed16[3] ^= t >> 24;
|
||||
seed16[4] ^= t >> 32;
|
||||
seed16[5] ^= t >> 40;
|
||||
seed16[6] ^= t >> 48;
|
||||
seed16[7] ^= t >> 56;
|
||||
}
|
||||
if (frand) {
|
||||
fclose(frand);
|
||||
}
|
||||
}
|
||||
|
||||
printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
|
||||
secp256k1_testrand_seed(seed16);
|
||||
}
|
||||
|
||||
static void secp256k1_testrand_finish(void) {
|
||||
unsigned char run32[32];
|
||||
secp256k1_testrand256(run32);
|
||||
printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);
|
||||
}
|
||||
|
||||
#endif /* SECP256K1_TESTRAND_IMPL_H */
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -18,7 +18,6 @@
|
||||
#ifndef EXHAUSTIVE_TEST_ORDER
|
||||
/* see group_impl.h for allowable values */
|
||||
#define EXHAUSTIVE_TEST_ORDER 13
|
||||
#define EXHAUSTIVE_TEST_LAMBDA 9 /* cube root of 1 mod 13 */
|
||||
#endif
|
||||
|
||||
#include "include/secp256k1.h"
|
||||
@ -27,10 +26,7 @@
|
||||
#include "secp256k1.c"
|
||||
#include "testrand_impl.h"
|
||||
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
#include "src/modules/recovery/main_impl.h"
|
||||
#include "include/secp256k1_recovery.h"
|
||||
#endif
|
||||
static int count = 2;
|
||||
|
||||
/** stolen from tests.c */
|
||||
void ge_equals_ge(const secp256k1_ge *a, const secp256k1_ge *b) {
|
||||
@ -62,7 +58,7 @@ void ge_equals_gej(const secp256k1_ge *a, const secp256k1_gej *b) {
|
||||
void random_fe(secp256k1_fe *x) {
|
||||
unsigned char bin[32];
|
||||
do {
|
||||
secp256k1_rand256(bin);
|
||||
secp256k1_testrand256(bin);
|
||||
if (secp256k1_fe_set_b32(x, bin)) {
|
||||
return;
|
||||
}
|
||||
@ -70,6 +66,15 @@ void random_fe(secp256k1_fe *x) {
|
||||
}
|
||||
/** END stolen from tests.c */
|
||||
|
||||
static uint32_t num_cores = 1;
|
||||
static uint32_t this_core = 0;
|
||||
|
||||
SECP256K1_INLINE static int skip_section(uint64_t* iter) {
|
||||
if (num_cores == 1) return 0;
|
||||
*iter += 0xe7037ed1a0b428dbULL;
|
||||
return ((((uint32_t)*iter ^ (*iter >> 32)) * num_cores) >> 32) != this_core;
|
||||
}
|
||||
|
||||
int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32,
|
||||
const unsigned char *key32, const unsigned char *algo16,
|
||||
void *data, unsigned int attempt) {
|
||||
@ -90,91 +95,93 @@ int secp256k1_nonce_function_smallint(unsigned char *nonce32, const unsigned cha
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
void test_exhaustive_endomorphism(const secp256k1_ge *group, int order) {
|
||||
void test_exhaustive_endomorphism(const secp256k1_ge *group) {
|
||||
int i;
|
||||
for (i = 0; i < order; i++) {
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_ge res;
|
||||
secp256k1_ge_mul_lambda(&res, &group[i]);
|
||||
ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
|
||||
void test_exhaustive_addition(const secp256k1_ge *group, const secp256k1_gej *groupj) {
|
||||
int i, j;
|
||||
uint64_t iter = 0;
|
||||
|
||||
/* Sanity-check (and check infinity functions) */
|
||||
CHECK(secp256k1_ge_is_infinity(&group[0]));
|
||||
CHECK(secp256k1_gej_is_infinity(&groupj[0]));
|
||||
for (i = 1; i < order; i++) {
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
CHECK(!secp256k1_ge_is_infinity(&group[i]));
|
||||
CHECK(!secp256k1_gej_is_infinity(&groupj[i]));
|
||||
}
|
||||
|
||||
/* Check all addition formulae */
|
||||
for (j = 0; j < order; j++) {
|
||||
for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
|
||||
secp256k1_fe fe_inv;
|
||||
if (skip_section(&iter)) continue;
|
||||
secp256k1_fe_inv(&fe_inv, &groupj[j].z);
|
||||
for (i = 0; i < order; i++) {
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_ge zless_gej;
|
||||
secp256k1_gej tmp;
|
||||
/* add_var */
|
||||
secp256k1_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL);
|
||||
ge_equals_gej(&group[(i + j) % order], &tmp);
|
||||
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
/* add_ge */
|
||||
if (j > 0) {
|
||||
secp256k1_gej_add_ge(&tmp, &groupj[i], &group[j]);
|
||||
ge_equals_gej(&group[(i + j) % order], &tmp);
|
||||
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
}
|
||||
/* add_ge_var */
|
||||
secp256k1_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL);
|
||||
ge_equals_gej(&group[(i + j) % order], &tmp);
|
||||
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
/* add_zinv_var */
|
||||
zless_gej.infinity = groupj[j].infinity;
|
||||
zless_gej.x = groupj[j].x;
|
||||
zless_gej.y = groupj[j].y;
|
||||
secp256k1_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv);
|
||||
ge_equals_gej(&group[(i + j) % order], &tmp);
|
||||
ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
}
|
||||
}
|
||||
|
||||
/* Check doubling */
|
||||
for (i = 0; i < order; i++) {
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_gej tmp;
|
||||
secp256k1_gej_double(&tmp, &groupj[i]);
|
||||
ge_equals_gej(&group[(2 * i) % order], &tmp);
|
||||
ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
secp256k1_gej_double_var(&tmp, &groupj[i], NULL);
|
||||
ge_equals_gej(&group[(2 * i) % order], &tmp);
|
||||
ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
}
|
||||
|
||||
/* Check negation */
|
||||
for (i = 1; i < order; i++) {
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_ge tmp;
|
||||
secp256k1_gej tmpj;
|
||||
secp256k1_ge_neg(&tmp, &group[i]);
|
||||
ge_equals_ge(&group[order - i], &tmp);
|
||||
ge_equals_ge(&group[EXHAUSTIVE_TEST_ORDER - i], &tmp);
|
||||
secp256k1_gej_neg(&tmpj, &groupj[i]);
|
||||
ge_equals_gej(&group[order - i], &tmpj);
|
||||
ge_equals_gej(&group[EXHAUSTIVE_TEST_ORDER - i], &tmpj);
|
||||
}
|
||||
}
|
||||
|
||||
void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj, int order) {
|
||||
void test_exhaustive_ecmult(const secp256k1_context *ctx, const secp256k1_ge *group, const secp256k1_gej *groupj) {
|
||||
int i, j, r_log;
|
||||
for (r_log = 1; r_log < order; r_log++) {
|
||||
for (j = 0; j < order; j++) {
|
||||
for (i = 0; i < order; i++) {
|
||||
uint64_t iter = 0;
|
||||
for (r_log = 1; r_log < EXHAUSTIVE_TEST_ORDER; r_log++) {
|
||||
for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
|
||||
if (skip_section(&iter)) continue;
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_gej tmp;
|
||||
secp256k1_scalar na, ng;
|
||||
secp256k1_scalar_set_int(&na, i);
|
||||
secp256k1_scalar_set_int(&ng, j);
|
||||
|
||||
secp256k1_ecmult(&ctx->ecmult_ctx, &tmp, &groupj[r_log], &na, &ng);
|
||||
ge_equals_gej(&group[(i * r_log + j) % order], &tmp);
|
||||
ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
|
||||
if (i > 0) {
|
||||
secp256k1_ecmult_const(&tmp, &group[i], &ng, 256);
|
||||
ge_equals_gej(&group[(i * j) % order], &tmp);
|
||||
ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -193,14 +200,16 @@ static int ecmult_multi_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t
|
||||
return 1;
|
||||
}
|
||||
|
||||
void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
|
||||
void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_ge *group) {
|
||||
int i, j, k, x, y;
|
||||
uint64_t iter = 0;
|
||||
secp256k1_scratch *scratch = secp256k1_scratch_create(&ctx->error_callback, 4096);
|
||||
for (i = 0; i < order; i++) {
|
||||
for (j = 0; j < order; j++) {
|
||||
for (k = 0; k < order; k++) {
|
||||
for (x = 0; x < order; x++) {
|
||||
for (y = 0; y < order; y++) {
|
||||
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) {
|
||||
for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
|
||||
for (x = 0; x < EXHAUSTIVE_TEST_ORDER; x++) {
|
||||
if (skip_section(&iter)) continue;
|
||||
for (y = 0; y < EXHAUSTIVE_TEST_ORDER; y++) {
|
||||
secp256k1_gej tmp;
|
||||
secp256k1_scalar g_sc;
|
||||
ecmult_multi_data data;
|
||||
@ -212,7 +221,7 @@ void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_
|
||||
data.pt[1] = group[y];
|
||||
|
||||
secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2);
|
||||
ge_equals_gej(&group[(i * x + j * y + k) % order], &tmp);
|
||||
ge_equals_gej(&group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER], &tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -221,22 +230,23 @@ void test_exhaustive_ecmult_multi(const secp256k1_context *ctx, const secp256k1_
|
||||
secp256k1_scratch_destroy(&ctx->error_callback, scratch);
|
||||
}
|
||||
|
||||
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k) {
|
||||
void r_from_k(secp256k1_scalar *r, const secp256k1_ge *group, int k, int* overflow) {
|
||||
secp256k1_fe x;
|
||||
unsigned char x_bin[32];
|
||||
k %= EXHAUSTIVE_TEST_ORDER;
|
||||
x = group[k].x;
|
||||
secp256k1_fe_normalize(&x);
|
||||
secp256k1_fe_get_b32(x_bin, &x);
|
||||
secp256k1_scalar_set_b32(r, x_bin, NULL);
|
||||
secp256k1_scalar_set_b32(r, x_bin, overflow);
|
||||
}
|
||||
|
||||
void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
|
||||
void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *group) {
|
||||
int s, r, msg, key;
|
||||
for (s = 1; s < order; s++) {
|
||||
for (r = 1; r < order; r++) {
|
||||
for (msg = 1; msg < order; msg++) {
|
||||
for (key = 1; key < order; key++) {
|
||||
uint64_t iter = 0;
|
||||
for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) {
|
||||
for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) {
|
||||
for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) {
|
||||
for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) {
|
||||
secp256k1_ge nonconst_ge;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
secp256k1_pubkey pk;
|
||||
@ -245,6 +255,8 @@ void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *gr
|
||||
int k, should_verify;
|
||||
unsigned char msg32[32];
|
||||
|
||||
if (skip_section(&iter)) continue;
|
||||
|
||||
secp256k1_scalar_set_int(&s_s, s);
|
||||
secp256k1_scalar_set_int(&r_s, r);
|
||||
secp256k1_scalar_set_int(&msg_s, msg);
|
||||
@ -254,9 +266,9 @@ void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *gr
|
||||
/* Run through every k value that gives us this r and check that *one* works.
|
||||
* Note there could be none, there could be multiple, ECDSA is weird. */
|
||||
should_verify = 0;
|
||||
for (k = 0; k < order; k++) {
|
||||
for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) {
|
||||
secp256k1_scalar check_x_s;
|
||||
r_from_k(&check_x_s, group, k);
|
||||
r_from_k(&check_x_s, group, k, NULL);
|
||||
if (r_s == check_x_s) {
|
||||
secp256k1_scalar_set_int(&s_times_k_s, k);
|
||||
secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
|
||||
@ -281,13 +293,15 @@ void test_exhaustive_verify(const secp256k1_context *ctx, const secp256k1_ge *gr
|
||||
}
|
||||
}
|
||||
|
||||
void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
|
||||
void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *group) {
|
||||
int i, j, k;
|
||||
uint64_t iter = 0;
|
||||
|
||||
/* Loop */
|
||||
for (i = 1; i < order; i++) { /* message */
|
||||
for (j = 1; j < order; j++) { /* key */
|
||||
for (k = 1; k < order; k++) { /* nonce */
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */
|
||||
for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */
|
||||
if (skip_section(&iter)) continue;
|
||||
for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */
|
||||
const int starting_k = k;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
secp256k1_scalar sk, msg, r, s, expected_r;
|
||||
@ -303,10 +317,10 @@ void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *grou
|
||||
/* Note that we compute expected_r *after* signing -- this is important
|
||||
* because our nonce-computing function function might change k during
|
||||
* signing. */
|
||||
r_from_k(&expected_r, group, k);
|
||||
r_from_k(&expected_r, group, k, NULL);
|
||||
CHECK(r == expected_r);
|
||||
CHECK((k * s) % order == (i + r * j) % order ||
|
||||
(k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
|
||||
CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER ||
|
||||
(k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER);
|
||||
|
||||
/* Overflow means we've tried every possible nonce */
|
||||
if (k < starting_k) {
|
||||
@ -327,184 +341,114 @@ void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *grou
|
||||
}
|
||||
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
|
||||
int i, j, k;
|
||||
|
||||
/* Loop */
|
||||
for (i = 1; i < order; i++) { /* message */
|
||||
for (j = 1; j < order; j++) { /* key */
|
||||
for (k = 1; k < order; k++) { /* nonce */
|
||||
const int starting_k = k;
|
||||
secp256k1_fe r_dot_y_normalized;
|
||||
secp256k1_ecdsa_recoverable_signature rsig;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
secp256k1_scalar sk, msg, r, s, expected_r;
|
||||
unsigned char sk32[32], msg32[32];
|
||||
int expected_recid;
|
||||
int recid;
|
||||
secp256k1_scalar_set_int(&msg, i);
|
||||
secp256k1_scalar_set_int(&sk, j);
|
||||
secp256k1_scalar_get_b32(sk32, &sk);
|
||||
secp256k1_scalar_get_b32(msg32, &msg);
|
||||
|
||||
secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k);
|
||||
|
||||
/* Check directly */
|
||||
secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig);
|
||||
r_from_k(&expected_r, group, k);
|
||||
CHECK(r == expected_r);
|
||||
CHECK((k * s) % order == (i + r * j) % order ||
|
||||
(k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
|
||||
/* In computing the recid, there is an overflow condition that is disabled in
|
||||
* scalar_low_impl.h `secp256k1_scalar_set_b32` because almost every r.y value
|
||||
* will exceed the group order, and our signing code always holds out for r
|
||||
* values that don't overflow, so with a proper overflow check the tests would
|
||||
* loop indefinitely. */
|
||||
r_dot_y_normalized = group[k].y;
|
||||
secp256k1_fe_normalize(&r_dot_y_normalized);
|
||||
/* Also the recovery id is flipped depending if we hit the low-s branch */
|
||||
if ((k * s) % order == (i + r * j) % order) {
|
||||
expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 1 : 0;
|
||||
} else {
|
||||
expected_recid = secp256k1_fe_is_odd(&r_dot_y_normalized) ? 0 : 1;
|
||||
}
|
||||
CHECK(recid == expected_recid);
|
||||
|
||||
/* Convert to a standard sig then check */
|
||||
secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
|
||||
secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig);
|
||||
/* Note that we compute expected_r *after* signing -- this is important
|
||||
* because our nonce-computing function function might change k during
|
||||
* signing. */
|
||||
r_from_k(&expected_r, group, k);
|
||||
CHECK(r == expected_r);
|
||||
CHECK((k * s) % order == (i + r * j) % order ||
|
||||
(k * (EXHAUSTIVE_TEST_ORDER - s)) % order == (i + r * j) % order);
|
||||
|
||||
/* Overflow means we've tried every possible nonce */
|
||||
if (k < starting_k) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group, int order) {
|
||||
/* This is essentially a copy of test_exhaustive_verify, with recovery added */
|
||||
int s, r, msg, key;
|
||||
for (s = 1; s < order; s++) {
|
||||
for (r = 1; r < order; r++) {
|
||||
for (msg = 1; msg < order; msg++) {
|
||||
for (key = 1; key < order; key++) {
|
||||
secp256k1_ge nonconst_ge;
|
||||
secp256k1_ecdsa_recoverable_signature rsig;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
secp256k1_pubkey pk;
|
||||
secp256k1_scalar sk_s, msg_s, r_s, s_s;
|
||||
secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s;
|
||||
int recid = 0;
|
||||
int k, should_verify;
|
||||
unsigned char msg32[32];
|
||||
|
||||
secp256k1_scalar_set_int(&s_s, s);
|
||||
secp256k1_scalar_set_int(&r_s, r);
|
||||
secp256k1_scalar_set_int(&msg_s, msg);
|
||||
secp256k1_scalar_set_int(&sk_s, key);
|
||||
secp256k1_scalar_get_b32(msg32, &msg_s);
|
||||
|
||||
/* Verify by hand */
|
||||
/* Run through every k value that gives us this r and check that *one* works.
|
||||
* Note there could be none, there could be multiple, ECDSA is weird. */
|
||||
should_verify = 0;
|
||||
for (k = 0; k < order; k++) {
|
||||
secp256k1_scalar check_x_s;
|
||||
r_from_k(&check_x_s, group, k);
|
||||
if (r_s == check_x_s) {
|
||||
secp256k1_scalar_set_int(&s_times_k_s, k);
|
||||
secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s);
|
||||
secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s);
|
||||
secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s);
|
||||
should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s);
|
||||
}
|
||||
}
|
||||
/* nb we have a "high s" rule */
|
||||
should_verify &= !secp256k1_scalar_is_high(&s_s);
|
||||
|
||||
/* We would like to try recovering the pubkey and checking that it matches,
|
||||
* but pubkey recovery is impossible in the exhaustive tests (the reason
|
||||
* being that there are 12 nonzero r values, 12 nonzero points, and no
|
||||
* overlap between the sets, so there are no valid signatures). */
|
||||
|
||||
/* Verify by converting to a standard signature and calling verify */
|
||||
secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid);
|
||||
secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig);
|
||||
memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge));
|
||||
secp256k1_pubkey_save(&pk, &nonconst_ge);
|
||||
CHECK(should_verify ==
|
||||
secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#include "src/modules/recovery/tests_exhaustive_impl.h"
|
||||
#endif
|
||||
|
||||
int main(void) {
|
||||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
#include "src/modules/extrakeys/tests_exhaustive_impl.h"
|
||||
#endif
|
||||
|
||||
#ifdef ENABLE_MODULE_SCHNORRSIG
|
||||
#include "src/modules/schnorrsig/tests_exhaustive_impl.h"
|
||||
#endif
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
int i;
|
||||
secp256k1_gej groupj[EXHAUSTIVE_TEST_ORDER];
|
||||
secp256k1_ge group[EXHAUSTIVE_TEST_ORDER];
|
||||
unsigned char rand32[32];
|
||||
secp256k1_context *ctx;
|
||||
|
||||
/* Build context */
|
||||
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||
/* Disable buffering for stdout to improve reliability of getting
|
||||
* diagnostic information. Happens right at the start of main because
|
||||
* setbuf must be used before any other operation on the stream. */
|
||||
setbuf(stdout, NULL);
|
||||
/* Also disable buffering for stderr because it's not guaranteed that it's
|
||||
* unbuffered on all systems. */
|
||||
setbuf(stderr, NULL);
|
||||
|
||||
/* TODO set z = 1, then do num_tests runs with random z values */
|
||||
printf("Exhaustive tests for order %lu\n", (unsigned long)EXHAUSTIVE_TEST_ORDER);
|
||||
|
||||
/* Generate the entire group */
|
||||
secp256k1_gej_set_infinity(&groupj[0]);
|
||||
secp256k1_ge_set_gej(&group[0], &groupj[0]);
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
/* Set a different random z-value for each Jacobian point */
|
||||
secp256k1_fe z;
|
||||
random_fe(&z);
|
||||
/* find iteration count */
|
||||
if (argc > 1) {
|
||||
count = strtol(argv[1], NULL, 0);
|
||||
}
|
||||
printf("test count = %i\n", count);
|
||||
|
||||
secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
|
||||
secp256k1_ge_set_gej(&group[i], &groupj[i]);
|
||||
secp256k1_gej_rescale(&groupj[i], &z);
|
||||
/* find random seed */
|
||||
secp256k1_testrand_init(argc > 2 ? argv[2] : NULL);
|
||||
|
||||
/* Verify against ecmult_gen */
|
||||
{
|
||||
secp256k1_scalar scalar_i;
|
||||
secp256k1_gej generatedj;
|
||||
secp256k1_ge generated;
|
||||
|
||||
secp256k1_scalar_set_int(&scalar_i, i);
|
||||
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
|
||||
secp256k1_ge_set_gej(&generated, &generatedj);
|
||||
|
||||
CHECK(group[i].infinity == 0);
|
||||
CHECK(generated.infinity == 0);
|
||||
CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
|
||||
CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
|
||||
/* set up split processing */
|
||||
if (argc > 4) {
|
||||
num_cores = strtol(argv[3], NULL, 0);
|
||||
this_core = strtol(argv[4], NULL, 0);
|
||||
if (num_cores < 1 || this_core >= num_cores) {
|
||||
fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1);
|
||||
}
|
||||
|
||||
/* Run the tests */
|
||||
#ifdef USE_ENDOMORPHISM
|
||||
test_exhaustive_endomorphism(group, EXHAUSTIVE_TEST_ORDER);
|
||||
#endif
|
||||
test_exhaustive_addition(group, groupj, EXHAUSTIVE_TEST_ORDER);
|
||||
test_exhaustive_ecmult(ctx, group, groupj, EXHAUSTIVE_TEST_ORDER);
|
||||
test_exhaustive_ecmult_multi(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||
test_exhaustive_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||
test_exhaustive_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||
while (count--) {
|
||||
/* Build context */
|
||||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
|
||||
secp256k1_testrand256(rand32);
|
||||
CHECK(secp256k1_context_randomize(ctx, rand32));
|
||||
|
||||
/* Generate the entire group */
|
||||
secp256k1_gej_set_infinity(&groupj[0]);
|
||||
secp256k1_ge_set_gej(&group[0], &groupj[0]);
|
||||
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
|
||||
secp256k1_gej_add_ge(&groupj[i], &groupj[i - 1], &secp256k1_ge_const_g);
|
||||
secp256k1_ge_set_gej(&group[i], &groupj[i]);
|
||||
if (count != 0) {
|
||||
/* Set a different random z-value for each Jacobian point, except z=1
|
||||
is used in the last iteration. */
|
||||
secp256k1_fe z;
|
||||
random_fe(&z);
|
||||
secp256k1_gej_rescale(&groupj[i], &z);
|
||||
}
|
||||
|
||||
/* Verify against ecmult_gen */
|
||||
{
|
||||
secp256k1_scalar scalar_i;
|
||||
secp256k1_gej generatedj;
|
||||
secp256k1_ge generated;
|
||||
|
||||
secp256k1_scalar_set_int(&scalar_i, i);
|
||||
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i);
|
||||
secp256k1_ge_set_gej(&generated, &generatedj);
|
||||
|
||||
CHECK(group[i].infinity == 0);
|
||||
CHECK(generated.infinity == 0);
|
||||
CHECK(secp256k1_fe_equal_var(&generated.x, &group[i].x));
|
||||
CHECK(secp256k1_fe_equal_var(&generated.y, &group[i].y));
|
||||
}
|
||||
}
|
||||
|
||||
/* Run the tests */
|
||||
test_exhaustive_endomorphism(group);
|
||||
test_exhaustive_addition(group, groupj);
|
||||
test_exhaustive_ecmult(ctx, group, groupj);
|
||||
test_exhaustive_ecmult_multi(ctx, group);
|
||||
test_exhaustive_sign(ctx, group);
|
||||
test_exhaustive_verify(ctx, group);
|
||||
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
test_exhaustive_recovery_sign(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||
test_exhaustive_recovery_verify(ctx, group, EXHAUSTIVE_TEST_ORDER);
|
||||
test_exhaustive_recovery(ctx, group);
|
||||
#endif
|
||||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
test_exhaustive_extrakeys(ctx, group);
|
||||
#endif
|
||||
#ifdef ENABLE_MODULE_SCHNORRSIG
|
||||
test_exhaustive_schnorrsig(ctx);
|
||||
#endif
|
||||
|
||||
secp256k1_context_destroy(ctx);
|
||||
secp256k1_context_destroy(ctx);
|
||||
}
|
||||
|
||||
secp256k1_testrand_finish();
|
||||
|
||||
printf("no problems found\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -216,6 +216,24 @@ static SECP256K1_INLINE void memczero(void *s, size_t len, int flag) {
|
||||
}
|
||||
}
|
||||
|
||||
/** Semantics like memcmp. Variable-time.
|
||||
*
|
||||
* We use this to avoid possible compiler bugs with memcmp, e.g.
|
||||
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=95189
|
||||
*/
|
||||
static SECP256K1_INLINE int secp256k1_memcmp_var(const void *s1, const void *s2, size_t n) {
|
||||
const unsigned char *p1 = s1, *p2 = s2;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
int diff = p1[i] - p2[i];
|
||||
if (diff != 0) {
|
||||
return diff;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized and non-negative.*/
|
||||
static SECP256K1_INLINE void secp256k1_int_cmov(int *r, const int *a, int flag) {
|
||||
unsigned int mask0, mask1, r_masked, a_masked;
|
||||
|
@ -9,19 +9,19 @@
|
||||
#include "assumptions.h"
|
||||
#include "util.h"
|
||||
|
||||
#if ENABLE_MODULE_ECDH
|
||||
#ifdef ENABLE_MODULE_ECDH
|
||||
# include "include/secp256k1_ecdh.h"
|
||||
#endif
|
||||
|
||||
#if ENABLE_MODULE_RECOVERY
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
# include "include/secp256k1_recovery.h"
|
||||
#endif
|
||||
|
||||
#if ENABLE_MODULE_EXTRAKEYS
|
||||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
# include "include/secp256k1_extrakeys.h"
|
||||
#endif
|
||||
|
||||
#if ENABLE_MODULE_SCHNORRSIG
|
||||
#ifdef ENABLE_MODULE_SCHNORRSIG
|
||||
#include "include/secp256k1_schnorrsig.h"
|
||||
#endif
|
||||
|
||||
@ -37,11 +37,11 @@ int main(void) {
|
||||
unsigned char key[32];
|
||||
unsigned char sig[74];
|
||||
unsigned char spubkey[33];
|
||||
#if ENABLE_MODULE_RECOVERY
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
secp256k1_ecdsa_recoverable_signature recoverable_signature;
|
||||
int recid;
|
||||
#endif
|
||||
#if ENABLE_MODULE_EXTRAKEYS
|
||||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
secp256k1_keypair keypair;
|
||||
#endif
|
||||
|
||||
@ -81,7 +81,7 @@ int main(void) {
|
||||
CHECK(ret);
|
||||
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature));
|
||||
|
||||
#if ENABLE_MODULE_ECDH
|
||||
#ifdef ENABLE_MODULE_ECDH
|
||||
/* Test ECDH. */
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_ecdh(ctx, msg, &pubkey, key, NULL, NULL);
|
||||
@ -89,7 +89,7 @@ int main(void) {
|
||||
CHECK(ret == 1);
|
||||
#endif
|
||||
|
||||
#if ENABLE_MODULE_RECOVERY
|
||||
#ifdef ENABLE_MODULE_RECOVERY
|
||||
/* Test signing a recoverable signature. */
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_ecdsa_sign_recoverable(ctx, &recoverable_signature, msg, key, NULL, NULL);
|
||||
@ -129,7 +129,7 @@ int main(void) {
|
||||
CHECK(ret);
|
||||
|
||||
/* Test keypair_create and keypair_xonly_tweak_add. */
|
||||
#if ENABLE_MODULE_EXTRAKEYS
|
||||
#ifdef ENABLE_MODULE_EXTRAKEYS
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_keypair_create(ctx, &keypair, key);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
@ -142,7 +142,7 @@ int main(void) {
|
||||
CHECK(ret == 1);
|
||||
#endif
|
||||
|
||||
#if ENABLE_MODULE_SCHNORRSIG
|
||||
#ifdef ENABLE_MODULE_SCHNORRSIG
|
||||
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
|
||||
ret = secp256k1_keypair_create(ctx, &keypair, key);
|
||||
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
|
||||
|
Loading…
Reference in New Issue
Block a user