mirror of
https://github.com/bitcoin/bitcoin.git
synced 2024-11-19 09:53:47 +01:00
Move BlockMerkleBranch back to merkle.{h,cpp}
The Mining interface uses this function in the next commit
to calculate the coinbase merkle path. Stratum v2 uses
this to send a compact work template.
This partially undoes the change in 4defdfab94
,
but is not a revert, because the implementation changed in the meantime.
This commit also documents the function.
This commit is contained in:
parent
65f6e7078b
commit
63d6ad7c89
@ -83,3 +83,106 @@ uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated)
|
||||
return ComputeMerkleRoot(std::move(leaves), mutated);
|
||||
}
|
||||
|
||||
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
||||
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
||||
if (pbranch) pbranch->clear();
|
||||
if (leaves.size() == 0) {
|
||||
if (pmutated) *pmutated = false;
|
||||
if (proot) *proot = uint256();
|
||||
return;
|
||||
}
|
||||
bool mutated = false;
|
||||
// count is the number of leaves processed so far.
|
||||
uint32_t count = 0;
|
||||
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
||||
// level (0 being the leaves).
|
||||
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
||||
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
||||
// the last leaf. The other inner entries are undefined.
|
||||
uint256 inner[32];
|
||||
// Which position in inner is a hash that depends on the matching leaf.
|
||||
int matchlevel = -1;
|
||||
// First process all leaves into 'inner' values.
|
||||
while (count < leaves.size()) {
|
||||
uint256 h = leaves[count];
|
||||
bool matchh = count == branchpos;
|
||||
count++;
|
||||
int level;
|
||||
// For each of the lower bits in count that are 0, do 1 step. Each
|
||||
// corresponds to an inner value that existed before processing the
|
||||
// current leaf, and each needs a hash to combine it.
|
||||
for (level = 0; !(count & ((uint32_t{1}) << level)); level++) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
mutated |= (inner[level] == h);
|
||||
h = Hash(inner[level], h);
|
||||
}
|
||||
// Store the resulting hash at inner position level.
|
||||
inner[level] = h;
|
||||
if (matchh) {
|
||||
matchlevel = level;
|
||||
}
|
||||
}
|
||||
// Do a final 'sweep' over the rightmost branch of the tree to process
|
||||
// odd levels, and reduce everything to a single top value.
|
||||
// Level is the level (counted from the bottom) up to which we've sweeped.
|
||||
int level = 0;
|
||||
// As long as bit number level in count is zero, skip it. It means there
|
||||
// is nothing left at this level.
|
||||
while (!(count & ((uint32_t{1}) << level))) {
|
||||
level++;
|
||||
}
|
||||
uint256 h = inner[level];
|
||||
bool matchh = matchlevel == level;
|
||||
while (count != ((uint32_t{1}) << level)) {
|
||||
// If we reach this point, h is an inner value that is not the top.
|
||||
// We combine it with itself (Bitcoin's special rule for odd levels in
|
||||
// the tree) to produce a higher level one.
|
||||
if (pbranch && matchh) {
|
||||
pbranch->push_back(h);
|
||||
}
|
||||
h = Hash(h, h);
|
||||
// Increment count to the value it would have if two entries at this
|
||||
// level had existed.
|
||||
count += ((uint32_t{1}) << level);
|
||||
level++;
|
||||
// And propagate the result upwards accordingly.
|
||||
while (!(count & ((uint32_t{1}) << level))) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
h = Hash(inner[level], h);
|
||||
level++;
|
||||
}
|
||||
}
|
||||
// Return result.
|
||||
if (pmutated) *pmutated = mutated;
|
||||
if (proot) *proot = h;
|
||||
}
|
||||
|
||||
static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
||||
std::vector<uint256> ret;
|
||||
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
|
||||
{
|
||||
std::vector<uint256> leaves;
|
||||
leaves.resize(block.vtx.size());
|
||||
for (size_t s = 0; s < block.vtx.size(); s++) {
|
||||
leaves[s] = block.vtx[s]->GetHash();
|
||||
}
|
||||
return ComputeMerkleBranch(leaves, position);
|
||||
}
|
||||
|
@ -24,4 +24,14 @@ uint256 BlockMerkleRoot(const CBlock& block, bool* mutated = nullptr);
|
||||
*/
|
||||
uint256 BlockWitnessMerkleRoot(const CBlock& block, bool* mutated = nullptr);
|
||||
|
||||
/**
|
||||
* Compute merkle path to the specified transaction
|
||||
*
|
||||
* @param[in] block the block
|
||||
* @param[in] position transaction for which to calculate the merkle path, defaults to coinbase
|
||||
*
|
||||
* @return merkle path ordered from the deepest
|
||||
*/
|
||||
std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position = 0);
|
||||
|
||||
#endif // BITCOIN_CONSENSUS_MERKLE_H
|
||||
|
@ -23,110 +23,6 @@ static uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vecto
|
||||
return hash;
|
||||
}
|
||||
|
||||
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
||||
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
||||
if (pbranch) pbranch->clear();
|
||||
if (leaves.size() == 0) {
|
||||
if (pmutated) *pmutated = false;
|
||||
if (proot) *proot = uint256();
|
||||
return;
|
||||
}
|
||||
bool mutated = false;
|
||||
// count is the number of leaves processed so far.
|
||||
uint32_t count = 0;
|
||||
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
||||
// level (0 being the leaves).
|
||||
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
||||
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
||||
// the last leaf. The other inner entries are undefined.
|
||||
uint256 inner[32];
|
||||
// Which position in inner is a hash that depends on the matching leaf.
|
||||
int matchlevel = -1;
|
||||
// First process all leaves into 'inner' values.
|
||||
while (count < leaves.size()) {
|
||||
uint256 h = leaves[count];
|
||||
bool matchh = count == branchpos;
|
||||
count++;
|
||||
int level;
|
||||
// For each of the lower bits in count that are 0, do 1 step. Each
|
||||
// corresponds to an inner value that existed before processing the
|
||||
// current leaf, and each needs a hash to combine it.
|
||||
for (level = 0; !(count & ((uint32_t{1}) << level)); level++) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
mutated |= (inner[level] == h);
|
||||
h = Hash(inner[level], h);
|
||||
}
|
||||
// Store the resulting hash at inner position level.
|
||||
inner[level] = h;
|
||||
if (matchh) {
|
||||
matchlevel = level;
|
||||
}
|
||||
}
|
||||
// Do a final 'sweep' over the rightmost branch of the tree to process
|
||||
// odd levels, and reduce everything to a single top value.
|
||||
// Level is the level (counted from the bottom) up to which we've sweeped.
|
||||
int level = 0;
|
||||
// As long as bit number level in count is zero, skip it. It means there
|
||||
// is nothing left at this level.
|
||||
while (!(count & ((uint32_t{1}) << level))) {
|
||||
level++;
|
||||
}
|
||||
uint256 h = inner[level];
|
||||
bool matchh = matchlevel == level;
|
||||
while (count != ((uint32_t{1}) << level)) {
|
||||
// If we reach this point, h is an inner value that is not the top.
|
||||
// We combine it with itself (Bitcoin's special rule for odd levels in
|
||||
// the tree) to produce a higher level one.
|
||||
if (pbranch && matchh) {
|
||||
pbranch->push_back(h);
|
||||
}
|
||||
h = Hash(h, h);
|
||||
// Increment count to the value it would have if two entries at this
|
||||
// level had existed.
|
||||
count += ((uint32_t{1}) << level);
|
||||
level++;
|
||||
// And propagate the result upwards accordingly.
|
||||
while (!(count & ((uint32_t{1}) << level))) {
|
||||
if (pbranch) {
|
||||
if (matchh) {
|
||||
pbranch->push_back(inner[level]);
|
||||
} else if (matchlevel == level) {
|
||||
pbranch->push_back(h);
|
||||
matchh = true;
|
||||
}
|
||||
}
|
||||
h = Hash(inner[level], h);
|
||||
level++;
|
||||
}
|
||||
}
|
||||
// Return result.
|
||||
if (pmutated) *pmutated = mutated;
|
||||
if (proot) *proot = h;
|
||||
}
|
||||
|
||||
static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
||||
std::vector<uint256> ret;
|
||||
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
|
||||
{
|
||||
std::vector<uint256> leaves;
|
||||
leaves.resize(block.vtx.size());
|
||||
for (size_t s = 0; s < block.vtx.size(); s++) {
|
||||
leaves[s] = block.vtx[s]->GetHash();
|
||||
}
|
||||
return ComputeMerkleBranch(leaves, position);
|
||||
}
|
||||
|
||||
// Older version of the merkle root computation code, for comparison.
|
||||
static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user