Merge #21236: net processing: Extract addr send functionality into MaybeSendAddr()

935d488922 [net processing] Refactor MaybeSendAddr() (John Newbery)
01a79ff924 [net processing] Fix overindentation in MaybeSendAddr() (John Newbery)
38c0be5da3 [net processing] Refactor MaybeSendAddr() - early exits (John Newbery)
c87423c58b [net processing] Change MaybeSendAddr() to take a reference (John Newbery)
ad719297f2 [net processing] Extract `addr` send functionality into MaybeSendAddr() (John Newbery)
4ad4abcf07 [net] Change addr send times fields to be guarded by new mutex (John Newbery)
c02fa47baa [net processing] Only call GetTime() once in SendMessages() (John Newbery)

Pull request description:

  This continues the work of moving application layer data into net_processing. It refactors `addr` send functionality into its own function `MaybeSendAddr()` and flattens/simplifies the code. Isolating and simplifying the addr handling code makes subsequent changes (which will move addr data and logic into net processing) easier to review.

  This is a pure refactor. There are no functional changes.

  For motivation of the project, see #19398.

ACKs for top commit:
  sipa:
    utACK 935d488922
  hebasto:
    ACK 935d488922, I have reviewed the code and it looks OK, I agree it can be merged.
  MarcoFalke:
    review ACK 935d488922 🐑

Tree-SHA512: 4e9dc84603147e74f479a211b42bcf315bdf5d14c21c08cf0b17d6c252775b90b012f0e0d834f1a607ed63c7ed5c63d5cf49b134344e7b64a1695bfcff111c92
This commit is contained in:
MarcoFalke 2021-04-01 08:29:44 +02:00
commit 539e4eec63
No known key found for this signature in database
GPG key ID: CE2B75697E69A548
2 changed files with 87 additions and 75 deletions

View file

@ -549,8 +549,9 @@ public:
std::vector<CAddress> vAddrToSend;
std::unique_ptr<CRollingBloomFilter> m_addr_known{nullptr};
bool fGetAddr{false};
std::chrono::microseconds m_next_addr_send GUARDED_BY(cs_sendProcessing){0};
std::chrono::microseconds m_next_local_addr_send GUARDED_BY(cs_sendProcessing){0};
Mutex m_addr_send_times_mutex;
std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0};
struct TxRelay {
mutable RecursiveMutex cs_filter;

View file

@ -33,6 +33,7 @@
#include <util/system.h>
#include <validation.h>
#include <algorithm>
#include <memory>
#include <optional>
#include <typeinfo>
@ -317,8 +318,13 @@ private:
void PushNodeVersion(CNode& pnode, int64_t nTime);
/** Send a ping message every PING_INTERVAL or if requested via RPC. May
* mark the peer to be disconnected if a ping has timed out. */
void MaybeSendPing(CNode& node_to, Peer& peer);
* mark the peer to be disconnected if a ping has timed out.
* We use mockable time for ping timeouts, so setmocktime may cause pings
* to time out. */
void MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now);
/** Send `addr` messages on a regular schedule. */
void MaybeSendAddr(CNode& node, std::chrono::microseconds current_time);
const CChainParams& m_chainparams;
CConnman& m_connman;
@ -4100,12 +4106,8 @@ void PeerManagerImpl::CheckForStaleTipAndEvictPeers()
}
}
void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer)
void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer, std::chrono::microseconds now)
{
// Use mockable time for ping timeouts.
// This means that setmocktime may cause pings to time out.
auto now = GetTime<std::chrono::microseconds>();
if (m_connman.RunInactivityChecks(node_to) && peer.m_ping_nonce_sent &&
now > peer.m_ping_start.load() + std::chrono::seconds{TIMEOUT_INTERVAL}) {
LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id);
@ -4144,6 +4146,75 @@ void PeerManagerImpl::MaybeSendPing(CNode& node_to, Peer& peer)
}
}
void PeerManagerImpl::MaybeSendAddr(CNode& node, std::chrono::microseconds current_time)
{
// Nothing to do for non-address-relay peers
if (!node.RelayAddrsWithConn()) return;
assert(node.m_addr_known);
LOCK(node.m_addr_send_times_mutex);
// Periodically advertise our local address to the peer.
if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload() &&
node.m_next_local_addr_send < current_time) {
// If we've sent before, clear the bloom filter for the peer, so that our
// self-announcement will actually go out.
// This might be unnecessary if the bloom filter has already rolled
// over since our last self-announcement, but there is only a small
// bandwidth cost that we can incur by doing this (which happens
// once a day on average).
if (node.m_next_local_addr_send != 0us) {
node.m_addr_known->reset();
}
if (std::optional<CAddress> local_addr = GetLocalAddrForPeer(&node)) {
FastRandomContext insecure_rand;
node.PushAddress(*local_addr, insecure_rand);
}
node.m_next_local_addr_send = PoissonNextSend(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
}
// We sent an `addr` message to this peer recently. Nothing more to do.
if (current_time <= node.m_next_addr_send) return;
node.m_next_addr_send = PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
if (!Assume(node.vAddrToSend.size() <= MAX_ADDR_TO_SEND)) {
// Should be impossible since we always check size before adding to
// vAddrToSend. Recover by trimming the vector.
node.vAddrToSend.resize(MAX_ADDR_TO_SEND);
}
// Remove addr records that the peer already knows about, and add new
// addrs to the m_addr_known filter on the same pass.
auto addr_already_known = [&node](const CAddress& addr) {
bool ret = node.m_addr_known->contains(addr.GetKey());
if (!ret) node.m_addr_known->insert(addr.GetKey());
return ret;
};
node.vAddrToSend.erase(std::remove_if(node.vAddrToSend.begin(), node.vAddrToSend.end(), addr_already_known),
node.vAddrToSend.end());
// No addr messages to send
if (node.vAddrToSend.empty()) return;
const char* msg_type;
int make_flags;
if (node.m_wants_addrv2) {
msg_type = NetMsgType::ADDRV2;
make_flags = ADDRV2_FORMAT;
} else {
msg_type = NetMsgType::ADDR;
make_flags = 0;
}
m_connman.PushMessage(&node, CNetMsgMaker(node.GetCommonVersion()).Make(make_flags, msg_type, node.vAddrToSend));
node.vAddrToSend.clear();
// we only send the big addr message once
if (node.vAddrToSend.capacity() > 40) {
node.vAddrToSend.shrink_to_fit();
}
}
namespace {
class CompareInvMempoolOrder
{
@ -4182,79 +4253,20 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
// If we get here, the outgoing message serialization version is set and can't change.
const CNetMsgMaker msgMaker(pto->GetCommonVersion());
MaybeSendPing(*pto, *peer);
const auto current_time = GetTime<std::chrono::microseconds>();
MaybeSendPing(*pto, *peer, current_time);
// MaybeSendPing may have marked peer for disconnection
if (pto->fDisconnect) return true;
MaybeSendAddr(*pto, current_time);
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
// Address refresh broadcast
auto current_time = GetTime<std::chrono::microseconds>();
if (fListen && pto->RelayAddrsWithConn() &&
!m_chainman.ActiveChainstate().IsInitialBlockDownload() &&
pto->m_next_local_addr_send < current_time) {
// If we've sent before, clear the bloom filter for the peer, so that our
// self-announcement will actually go out.
// This might be unnecessary if the bloom filter has already rolled
// over since our last self-announcement, but there is only a small
// bandwidth cost that we can incur by doing this (which happens
// once a day on average).
if (pto->m_next_local_addr_send != 0us) {
pto->m_addr_known->reset();
}
if (std::optional<CAddress> local_addr = GetLocalAddrForPeer(pto)) {
FastRandomContext insecure_rand;
pto->PushAddress(*local_addr, insecure_rand);
}
pto->m_next_local_addr_send = PoissonNextSend(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
}
//
// Message: addr
//
if (pto->RelayAddrsWithConn() && pto->m_next_addr_send < current_time) {
pto->m_next_addr_send = PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
std::vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
assert(pto->m_addr_known);
const char* msg_type;
int make_flags;
if (pto->m_wants_addrv2) {
msg_type = NetMsgType::ADDRV2;
make_flags = ADDRV2_FORMAT;
} else {
msg_type = NetMsgType::ADDR;
make_flags = 0;
}
for (const CAddress& addr : pto->vAddrToSend)
{
if (!pto->m_addr_known->contains(addr.GetKey()))
{
pto->m_addr_known->insert(addr.GetKey());
vAddr.push_back(addr);
// receiver rejects addr messages larger than MAX_ADDR_TO_SEND
if (vAddr.size() >= MAX_ADDR_TO_SEND)
{
m_connman.PushMessage(pto, msgMaker.Make(make_flags, msg_type, vAddr));
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
m_connman.PushMessage(pto, msgMaker.Make(make_flags, msg_type, vAddr));
// we only send the big addr message once
if (pto->vAddrToSend.capacity() > 40)
pto->vAddrToSend.shrink_to_fit();
}
// Start block sync
if (pindexBestHeader == nullptr)
pindexBestHeader = m_chainman.ActiveChain().Tip();
@ -4489,7 +4501,7 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
vInv.clear();
}
}
pto->m_tx_relay->m_last_mempool_req = GetTime<std::chrono::seconds>();
pto->m_tx_relay->m_last_mempool_req = std::chrono::duration_cast<std::chrono::seconds>(current_time);
}
// Determine transactions to relay
@ -4577,7 +4589,6 @@ bool PeerManagerImpl::SendMessages(CNode* pto)
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
// Detect whether we're stalling
current_time = GetTime<std::chrono::microseconds>();
if (state.m_stalling_since.count() && state.m_stalling_since < current_time - BLOCK_STALLING_TIMEOUT) {
// Stalling only triggers when the block download window cannot move. During normal steady state,
// the download window should be much larger than the to-be-downloaded set of blocks, so disconnection