mirror of
https://github.com/bitcoin/bitcoin.git
synced 2024-11-20 10:38:42 +01:00
Add explanation about how inversion can be avoided
This commit is contained in:
parent
ce7eb6fb3d
commit
13278f642c
@ -126,15 +126,33 @@ static int secp256k1_ecdsa_sig_verify(const secp256k1_ecdsa_sig_t *sig, const se
|
||||
secp256k1_scalar_get_b32(c, &sig->r);
|
||||
secp256k1_fe_t xr;
|
||||
secp256k1_fe_set_b32(&xr, c);
|
||||
|
||||
// We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
|
||||
// in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
|
||||
// compute the remainder modulo n, and compare it to xr. However:
|
||||
//
|
||||
// xr == X(pr) mod n
|
||||
// <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
|
||||
// [Since 2 * n > p, h can only be 0 or 1]
|
||||
// <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
|
||||
// [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
|
||||
// <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
|
||||
// [Multiplying both sides of the equations by pr.z^2 mod p]
|
||||
// <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
|
||||
//
|
||||
// Thus, we can avoid the inversion, but we have to check both cases separately.
|
||||
// secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
|
||||
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
|
||||
// xr.x == xr * xr.z^2 mod p, so the signature is valid.
|
||||
return 1;
|
||||
}
|
||||
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_consts->p_minus_order) >= 0) {
|
||||
// We can't add the order to r. This will be the case for almost every r.
|
||||
// xr + p >= n, so we can skip testing the second case.
|
||||
return 0;
|
||||
}
|
||||
secp256k1_fe_add(&xr, &secp256k1_ecdsa_consts->order_as_fe);
|
||||
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
|
||||
// (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid.
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user