Merge commit 'b2135359b3ad37cf2ac09b008079ddb237eff2c9'

This commit is contained in:
Wladimir J. van der Laan 2016-08-16 11:34:12 +02:00
commit 0237096df5
42 changed files with 3906 additions and 196 deletions

View File

@ -25,17 +25,24 @@ config.status
libtool
.deps/
.dirstamp
build-aux/
*.lo
*.o
*~
src/libsecp256k1-config.h
src/libsecp256k1-config.h.in
src/ecmult_static_context.h
m4/libtool.m4
m4/ltoptions.m4
m4/ltsugar.m4
m4/ltversion.m4
m4/lt~obsolete.m4
build-aux/config.guess
build-aux/config.sub
build-aux/depcomp
build-aux/install-sh
build-aux/ltmain.sh
build-aux/m4/libtool.m4
build-aux/m4/lt~obsolete.m4
build-aux/m4/ltoptions.m4
build-aux/m4/ltsugar.m4
build-aux/m4/ltversion.m4
build-aux/missing
build-aux/compile
build-aux/test-driver
src/stamp-h1
libsecp256k1.pc

View File

@ -6,26 +6,31 @@ addons:
compiler:
- clang
- gcc
cache:
directories:
- src/java/guava/
env:
global:
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=no RECOVERY=no
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=no RECOVERY=no EXPERIMENTAL=no
- GUAVA_URL=https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar GUAVA_JAR=src/java/guava/guava-18.0.jar
matrix:
- SCALAR=32bit RECOVERY=yes
- SCALAR=32bit FIELD=32bit ECDH=yes
- SCALAR=32bit FIELD=32bit ECDH=yes EXPERIMENTAL=yes
- SCALAR=64bit
- FIELD=64bit RECOVERY=yes
- FIELD=64bit ENDOMORPHISM=yes
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
- FIELD=64bit ASM=x86_64
- FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
- FIELD=32bit SCHNORR=yes
- FIELD=32bit SCHNORR=yes EXPERIMENTAL=yes
- FIELD=32bit ENDOMORPHISM=yes
- BIGNUM=no
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes EXPERIMENTAL=yes
- BIGNUM=no STATICPRECOMPUTATION=no
- BUILD=distcheck
- EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC
- EXTRAFLAGS=CFLAGS=-O0
- BUILD=check-java ECDH=yes SCHNORR=yes EXPERIMENTAL=yes
matrix:
fast_finish: true
include:
@ -55,9 +60,11 @@ matrix:
packages:
- gcc-multilib
- libgmp-dev:i386
before_install: mkdir -p `dirname $GUAVA_JAR`
install: if [ ! -f $GUAVA_JAR ]; then wget $GUAVA_URL -O $GUAVA_JAR; fi
before_script: ./autogen.sh
script:
- if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
- if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
- ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
- ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
os: linux

View File

@ -1,6 +1,12 @@
ACLOCAL_AMFLAGS = -I build-aux/m4
lib_LTLIBRARIES = libsecp256k1.la
if USE_JNI
JNI_LIB = libsecp256k1_jni.la
noinst_LTLIBRARIES = $(JNI_LIB)
else
JNI_LIB =
endif
include_HEADERS = include/secp256k1.h
noinst_HEADERS =
noinst_HEADERS += src/scalar.h
@ -32,6 +38,7 @@ noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
@ -45,35 +52,80 @@ noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
if USE_EXTERNAL_ASM
COMMON_LIB = libsecp256k1_common.la
noinst_LTLIBRARIES = $(COMMON_LIB)
else
COMMON_LIB =
endif
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(SECP_LIBS)
if USE_EXTERNAL_ASM
if USE_ASM_ARM
libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s
endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(JNI_LIB) $(SECP_LIBS) $(COMMON_LIB)
libsecp256k1_jni_la_SOURCES = src/java/org_bitcoin_NativeSecp256k1.c src/java/org_bitcoin_Secp256k1Context.c
libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES)
noinst_PROGRAMS =
if USE_BENCHMARK
noinst_PROGRAMS += bench_verify bench_sign bench_internal
bench_verify_SOURCES = src/bench_verify.c
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_sign_SOURCES = src/bench_sign.c
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_internal_SOURCES = src/bench_internal.c
bench_internal_LDADD = $(SECP_LIBS)
bench_internal_CPPFLAGS = $(SECP_INCLUDES)
bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
endif
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DVERIFY -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS)
tests_CPPFLAGS = -DSECP256K1_BUILD -DVERIFY -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
tests_LDFLAGS = -static
TESTS = tests
endif
JAVAROOT=src/java
JAVAORG=org/bitcoin
JAVA_GUAVA=$(srcdir)/$(JAVAROOT)/guava/guava-18.0.jar
CLASSPATH_ENV=CLASSPATH=$(JAVA_GUAVA)
JAVA_FILES= \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Test.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Util.java \
$(JAVAROOT)/$(JAVAORG)/Secp256k1Context.java
if USE_JNI
$(JAVA_GUAVA):
@echo Guava is missing. Fetch it via: \
wget https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar -O $(@)
@false
.stamp-java: $(JAVA_FILES)
@echo Compiling $^
$(AM_V_at)$(CLASSPATH_ENV) javac $^
@touch $@
if USE_TESTS
check-java: libsecp256k1.la $(JAVA_GUAVA) .stamp-java
$(AM_V_at)java -Djava.library.path="./:./src:./src/.libs:.libs/" -cp "$(JAVA_GUAVA):$(JAVAROOT)" $(JAVAORG)/NativeSecp256k1Test
endif
endif
if USE_ECMULT_STATIC_PRECOMPUTATION
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)
CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
@ -93,10 +145,10 @@ $(bench_internal_OBJECTS): src/ecmult_static_context.h
src/ecmult_static_context.h: $(gen_context_BIN)
./$(gen_context_BIN)
CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h
CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h $(JAVAROOT)/$(JAVAORG)/*.class .stamp-java
endif
EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h
EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h $(JAVA_FILES)
if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include

View File

@ -1,7 +1,7 @@
libsecp256k1
============
[![Build Status](https://travis-ci.org/bitcoin/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin/secp256k1)
[![Build Status](https://travis-ci.org/bitcoin-core/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin-core/secp256k1)
Optimized C library for EC operations on curve secp256k1.

View File

@ -0,0 +1,140 @@
# ===========================================================================
# http://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_JNI_INCLUDE_DIR
#
# DESCRIPTION
#
# AX_JNI_INCLUDE_DIR finds include directories needed for compiling
# programs using the JNI interface.
#
# JNI include directories are usually in the Java distribution. This is
# deduced from the value of $JAVA_HOME, $JAVAC, or the path to "javac", in
# that order. When this macro completes, a list of directories is left in
# the variable JNI_INCLUDE_DIRS.
#
# Example usage follows:
#
# AX_JNI_INCLUDE_DIR
#
# for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS
# do
# CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR"
# done
#
# If you want to force a specific compiler:
#
# - at the configure.in level, set JAVAC=yourcompiler before calling
# AX_JNI_INCLUDE_DIR
#
# - at the configure level, setenv JAVAC
#
# Note: This macro can work with the autoconf M4 macros for Java programs.
# This particular macro is not part of the original set of macros.
#
# LICENSE
#
# Copyright (c) 2008 Don Anderson <dda@sleepycat.com>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 10
AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR])
AC_DEFUN([AX_JNI_INCLUDE_DIR],[
JNI_INCLUDE_DIRS=""
if test "x$JAVA_HOME" != x; then
_JTOPDIR="$JAVA_HOME"
else
if test "x$JAVAC" = x; then
JAVAC=javac
fi
AC_PATH_PROG([_ACJNI_JAVAC], [$JAVAC], [no])
if test "x$_ACJNI_JAVAC" = xno; then
AC_MSG_WARN([cannot find JDK; try setting \$JAVAC or \$JAVA_HOME])
fi
_ACJNI_FOLLOW_SYMLINKS("$_ACJNI_JAVAC")
_JTOPDIR=`echo "$_ACJNI_FOLLOWED" | sed -e 's://*:/:g' -e 's:/[[^/]]*$::'`
fi
case "$host_os" in
darwin*) _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
_JINC="$_JTOPDIR/Headers";;
*) _JINC="$_JTOPDIR/include";;
esac
_AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR])
_AS_ECHO_LOG([_JINC=$_JINC])
# On Mac OS X 10.6.4, jni.h is a symlink:
# /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h
# -> ../../CurrentJDK/Headers/jni.h.
AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path,
[
if test -f "$_JINC/jni.h"; then
ac_cv_jni_header_path="$_JINC"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
_JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
if test -f "$_JTOPDIR/include/jni.h"; then
ac_cv_jni_header_path="$_JTOPDIR/include"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
ac_cv_jni_header_path=none
fi
fi
])
# get the likely subdirectories for system specific java includes
case "$host_os" in
bsdi*) _JNI_INC_SUBDIRS="bsdos";;
darwin*) _JNI_INC_SUBDIRS="darwin";;
freebsd*) _JNI_INC_SUBDIRS="freebsd";;
linux*) _JNI_INC_SUBDIRS="linux genunix";;
osf*) _JNI_INC_SUBDIRS="alpha";;
solaris*) _JNI_INC_SUBDIRS="solaris";;
mingw*) _JNI_INC_SUBDIRS="win32";;
cygwin*) _JNI_INC_SUBDIRS="win32";;
*) _JNI_INC_SUBDIRS="genunix";;
esac
if test "x$ac_cv_jni_header_path" != "xnone"; then
# add any subdirectories that are present
for JINCSUBDIR in $_JNI_INC_SUBDIRS
do
if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR"
fi
done
fi
])
# _ACJNI_FOLLOW_SYMLINKS <path>
# Follows symbolic links on <path>,
# finally setting variable _ACJNI_FOLLOWED
# ----------------------------------------
AC_DEFUN([_ACJNI_FOLLOW_SYMLINKS],[
# find the include directory relative to the javac executable
_cur="$1"
while ls -ld "$_cur" 2>/dev/null | grep " -> " >/dev/null; do
AC_MSG_CHECKING([symlink for $_cur])
_slink=`ls -ld "$_cur" | sed 's/.* -> //'`
case "$_slink" in
/*) _cur="$_slink";;
# 'X' avoids triggering unwanted echo options.
*) _cur=`echo "X$_cur" | sed -e 's/^X//' -e 's:[[^/]]*$::'`"$_slink";;
esac
AC_MSG_RESULT([$_cur])
done
_ACJNI_FOLLOWED="$_cur"
])# _ACJNI

View File

@ -3,13 +3,13 @@ AC_DEFUN([SECP_INT128_CHECK],[
has_int128=$ac_cv_type___int128
])
dnl
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_64BIT_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>]],[[
uint64_t a = 11, tmp;
__asm__ __volatile__("movq $0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
]])],[has_64bit_asm=yes],[has_64bit_asm=no])
AC_MSG_RESULT([$has_64bit_asm])
])

View File

@ -29,6 +29,7 @@ AC_PROG_CC_C89
if test x"$ac_cv_prog_cc_c89" = x"no"; then
AC_MSG_ERROR([c89 compiler support required])
fi
AM_PROG_AS
case $host_os in
*darwin*)
@ -93,23 +94,33 @@ AC_ARG_ENABLE(tests,
[use_tests=$enableval],
[use_tests=yes])
AC_ARG_ENABLE(openssl_tests,
AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests, if OpenSSL is available (default is auto)]),
[enable_openssl_tests=$enableval],
[enable_openssl_tests=auto])
AC_ARG_ENABLE(experimental,
AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]),
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
[use_endomorphism=$enableval],
[use_endomorphism=no])
AC_ARG_ENABLE(ecmult_static_precomputation,
AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]),
[use_ecmult_static_precomputation=$enableval],
[use_ecmult_static_precomputation=yes])
[use_ecmult_static_precomputation=auto])
AC_ARG_ENABLE(module_ecdh,
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (default is no)]),
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]),
[enable_module_ecdh=$enableval],
[enable_module_ecdh=no])
AC_ARG_ENABLE(module_schnorr,
AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (default is no)]),
AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (experimental)]),
[enable_module_schnorr=$enableval],
[enable_module_schnorr=no])
@ -118,6 +129,11 @@ AC_ARG_ENABLE(module_recovery,
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
AC_ARG_ENABLE(jni,
AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is auto)]),
[use_jni=$enableval],
[use_jni=auto])
AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto])
@ -127,8 +143,8 @@ AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|no|auto]
[Specify assembly optimizations to use. Default is auto])],[req_asm=$withval], [req_asm=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto]
[Specify assembly optimizations to use. Default is auto (experimental: arm)])],[req_asm=$withval], [req_asm=auto])
AC_CHECK_TYPES([__int128])
@ -138,6 +154,34 @@ AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])],
[ AC_MSG_RESULT([no])
])
if test x"$use_ecmult_static_precomputation" != x"no"; then
save_cross_compiling=$cross_compiling
cross_compiling=no
TEMP_CC="$CC"
CC="$CC_FOR_BUILD"
AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}])
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [return 0])],
[working_native_cc=yes],
[working_native_cc=no],[dnl])
CC="$TEMP_CC"
cross_compiling=$save_cross_compiling
if test x"$working_native_cc" = x"no"; then
set_precomp=no
if test x"$use_ecmult_static_precomputation" = x"yes"; then
AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
else
AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
fi
else
AC_MSG_RESULT([ok])
set_precomp=yes
fi
else
set_precomp=no
fi
if test x"$req_asm" = x"auto"; then
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" = x"yes"; then
@ -155,6 +199,8 @@ else
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
fi
;;
arm)
;;
no)
;;
*)
@ -247,10 +293,15 @@ else
fi
# select assembly optimization
use_external_asm=no
case $set_asm in
x86_64)
AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations])
;;
arm)
use_external_asm=yes
;;
no)
;;
*)
@ -305,16 +356,51 @@ esac
if test x"$use_tests" = x"yes"; then
SECP_OPENSSL_CHECK
if test x"$has_openssl_ec" = x"yes"; then
AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS"
SECP_TEST_LIBS="$CRYPTO_LIBS"
if test x"$enable_openssl_tests" != x"no"; then
AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS"
SECP_TEST_LIBS="$CRYPTO_LIBS"
case $host in
*mingw*)
SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
;;
esac
case $host in
*mingw*)
SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
;;
esac
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available])
fi
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled])
fi
fi
if test x"$use_jni" != x"no"; then
AX_JNI_INCLUDE_DIR
have_jni_dependencies=yes
if test x"$enable_module_schnorr" = x"no"; then
have_jni_dependencies=no
fi
if test x"$enable_module_ecdh" = x"no"; then
have_jni_dependencies=no
fi
if test "x$JNI_INCLUDE_DIRS" = "x"; then
have_jni_dependencies=no
fi
if test "x$have_jni_dependencies" = "xno"; then
if test x"$use_jni" = x"yes"; then
AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and Schnorr and try again.])
fi
AC_MSG_WARN([jni headers/dependencies not found. jni support disabled])
use_jni=no
else
use_jni=yes
for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do
JNI_INCLUDES="$JNI_INCLUDES -I$JNI_INCLUDE_DIR"
done
fi
fi
@ -345,18 +431,43 @@ fi
AC_C_BIGENDIAN()
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
fi
AC_MSG_NOTICE([Using static precomputation: $set_precomp])
AC_MSG_NOTICE([Using assembly optimizations: $set_asm])
AC_MSG_NOTICE([Using field implementation: $set_field])
AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
AC_MSG_NOTICE([Using jni: $use_jni])
if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
AC_MSG_NOTICE([******])
else
if test x"$enable_module_schnorr" = x"yes"; then
AC_MSG_ERROR([Schnorr signature module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
fi
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
AC_SUBST(JNI_INCLUDES)
AC_SUBST(SECP_INCLUDES)
AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
@ -367,6 +478,9 @@ AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$use_ecmult_static_pr
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORR], [test x"$enable_module_schnorr" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
dnl make sure nothing new is exported so that we don't break the cache
PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"

View File

@ -5,7 +5,7 @@ includedir=@includedir@
Name: libsecp256k1
Description: Optimized C library for EC operations on curve secp256k1
URL: https://github.com/bitcoin/secp256k1
URL: https://github.com/bitcoin-core/secp256k1
Version: @PACKAGE_VERSION@
Cflags: -I${includedir}
Libs.private: @SECP_LIBS@

View File

@ -0,0 +1,322 @@
# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# exectured. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see http://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(map(numerator, assumeZero))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __div__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(map(numerator, con.zero))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(f)
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(f)
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(numerator(allexprs)).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if f not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
zero = R.ideal(map(numerator, assume.zero))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(map(numerator, assume.zero))
zeroextra = R.ideal(map(numerator, zerox))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if f not in nonzero:
add += ["%s" % f]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if zeroextra.reduce(f) not in nonzero:
ret.add("%s != 0" % zeroextra.reduce(f))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return None
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return "FAIL, %s fails (assuming %s)" % (str(msg), describe)
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return "FAIL, %s fails (assuming %s)" % (str(expl), describe)
if describe != "":
return "OK (assuming %s)" % describe
else:
return "OK"
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)

View File

@ -0,0 +1,306 @@
# Test libsecp256k1' group operation implementations using prover.sage
import sys
load("group_prover.sage")
load("weierstrass_prover.sage")
def formula_secp256k1_gej_double_var(a):
"""libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
rz = a.Z * a.Y
rz = rz * 2
t1 = a.X^2
t1 = t1 * 3
t2 = t1^2
t3 = a.Y^2
t3 = t3 * 2
t4 = t3^2
t4 = t4 * 2
t3 = t3 * a.X
rx = t3
rx = rx * 4
rx = -rx
rx = rx + t2
t2 = -t2
t3 = t3 * 6
t3 = t3 + t2
ry = t1 * t3
t2 = -t4
ry = ry + t2
return jacobianpoint(rx, ry, rz)
def formula_secp256k1_gej_add_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_var"""
if branch == 0:
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z22 = b.Z^2
z12 = a.Z^2
u1 = a.X * z22
u2 = b.X * z12
s1 = a.Y * z22
s1 = s1 * b.Z
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s1
i = i + s2
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
if branch == 3:
return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h2 * h
h = h * b.Z
rz = a.Z * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
if branch == 0:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z12 = a.Z^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s1
i = i + s2
if (branch == 2):
r = formula_secp256k1_gej_double_var(a)
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if (branch == 3):
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h * h2
rz = a.Z * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_zinv_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_zinv_var"""
bzinv = b.Z^(-1)
if branch == 0:
return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a)
if branch == 1:
bzinv2 = bzinv^2
bzinv3 = bzinv2 * bzinv
rx = b.X * bzinv2
ry = b.Y * bzinv3
rz = 1
return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz))
azz = a.Z * bzinv
z12 = azz^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * azz
h = -u1
h = h + u2
i = -s1
i = i + s2
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if branch == 3:
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h * h2
rz = a.Z
rz = rz * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge"""
zeroes = {}
nonzeroes = {}
a_infinity = False
if (branch & 4) != 0:
nonzeroes.update({a.Infinity : 'a_infinite'})
a_infinity = True
else:
zeroes.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
t = u1
t = t + u2
m = s1
m = m + s2
rr = t^2
m_alt = -u2
tt = u1 * m_alt
rr = rr + tt
degenerate = (branch & 3) == 3
if (branch & 1) != 0:
zeroes.update({m : 'm_zero'})
else:
nonzeroes.update({m : 'm_nonzero'})
if (branch & 2) != 0:
zeroes.update({rr : 'rr_zero'})
else:
nonzeroes.update({rr : 'rr_nonzero'})
rr_alt = s1
rr_alt = rr_alt * 2
m_alt = m_alt + u1
if not degenerate:
rr_alt = rr
m_alt = m
n = m_alt^2
q = n * t
n = n^2
if degenerate:
n = m
t = rr_alt^2
rz = a.Z * m_alt
infinity = False
if (branch & 8) != 0:
if not a_infinity:
infinity = True
zeroes.update({rz : 'r.z=0'})
else:
nonzeroes.update({rz : 'r.z!=0'})
rz = rz * 2
q = -q
t = t + q
rx = t
t = t * 2
t = t + q
t = t * rr_alt
t = t + n
ry = -t
rx = rx * 4
ry = ry * 4
if a_infinity:
rx = b.X
ry = b.Y
rz = 1
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_old(branch, a, b):
"""libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
a_infinity = (branch & 1) != 0
zero = {}
nonzero = {}
if a_infinity:
nonzero.update({a.Infinity : 'a_infinite'})
else:
zero.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
z = a.Z
t = u1
t = t + u2
m = s1
m = m + s2
n = m^2
q = n * t
n = n^2
rr = t^2
t = u1 * u2
t = -t
rr = rr + t
t = rr^2
rz = m * z
infinity = False
if (branch & 2) != 0:
if not a_infinity:
infinity = True
else:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
zero.update({rz : 'r.z=0'})
else:
nonzero.update({rz : 'r.z!=0'})
rz = rz * (0 if a_infinity else 2)
rx = t
q = -q
rx = rx + q
q = q * 3
t = t * 2
t = t + q
t = t * rr
t = t + n
ry = -t
rx = rx * (0 if a_infinity else 4)
ry = ry * (0 if a_infinity else 4)
t = b.X
t = t * (1 if a_infinity else 0)
rx = rx + t
t = b.Y
t = t * (1 if a_infinity else 0)
ry = ry + t
t = (1 if a_infinity else 0)
rz = rz + t
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
if __name__ == "__main__":
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)
if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)

View File

@ -0,0 +1,264 @@
# Prover implementation for Weierstrass curves of the form
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
# operating on affine and Jacobian coordinates, including the point at infinity
# represented by a 4th variable in coordinates.
load("group_prover.sage")
class affinepoint:
def __init__(self, x, y, infinity=0):
self.x = x
self.y = y
self.infinity = infinity
def __str__(self):
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
class jacobianpoint:
def __init__(self, x, y, z, infinity=0):
self.X = x
self.Y = y
self.Z = z
self.Infinity = infinity
def __str__(self):
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
def point_at_infinity():
return jacobianpoint(1, 1, 1, 1)
def negate(p):
if p.__class__ == affinepoint:
return affinepoint(p.x, -p.y)
if p.__class__ == jacobianpoint:
return jacobianpoint(p.X, -p.Y, p.Z)
assert(False)
def on_weierstrass_curve(A, B, p):
"""Return a set of zero-expressions for an affine point to be on the curve"""
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
def tangential_to_weierstrass_curve(A, B, p12, p3):
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
return constraints(zero={
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
})
def colinear(p1, p2, p3):
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
return constraints(zero={
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
})
def good_affine_point(p):
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
def good_jacobian_point(p):
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
def good_point(p):
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
def finite(p, *affine_fns):
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
if p.Z != 0:
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
else:
return con
def infinite(p):
return constraints(nonzero={p.Infinity : 'infinite_point'})
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(nonzero={pa.x - pb.x : 'different_x'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
colinear(pa, pb, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
require = infinite(pC)
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pb) +
infinite(pA) +
finite(pB))
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
infinite(pB) +
finite(pA))
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
infinite(pA) +
infinite(pB))
require = infinite(pC)
return (assumeLaw, require)
laws_jacobian_weierstrass = {
'add': law_jacobian_weierstrass_add,
'double': law_jacobian_weierstrass_double,
'add_opposite': law_jacobian_weierstrass_add_opposites,
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
}
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
F = Integers(p)
print "Formula %s on Z%i:" % (name, p)
points = []
for x in xrange(0, p):
for y in xrange(0, p):
point = affinepoint(F(x), F(y))
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
if r:
points.append(point)
for za in xrange(1, p):
for zb in xrange(1, p):
for pa in points:
for pb in points:
for ia in xrange(2):
for ib in xrange(2):
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
for branch in xrange(0, branches):
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
pC.X = F(pC.X)
pC.Y = F(pC.Y)
pC.Z = F(pC.Z)
pC.Infinity = F(pC.Infinity)
r, e = concrete_verify(assumeAssert + assumeBranch)
if r:
match = False
for key in laws_jacobian_weierstrass:
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
r, e = concrete_verify(assumeLaw)
if r:
if match:
print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
else:
match = True
r, e = concrete_verify(require)
if not r:
print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
print
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
lift = lambda x: fastfrac(R,x)
ax = lift(ax)
ay = lift(ay)
Az = lift(Az)
bx = lift(bx)
by = lift(by)
Bz = lift(Bz)
Ai = lift(Ai)
Bi = lift(Bi)
pa = affinepoint(ax, ay, Ai)
pb = affinepoint(bx, by, Bi)
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
res = {}
for key in laws_jacobian_weierstrass:
res[key] = []
print ("Formula " + name + ":")
count = 0
for branch in xrange(branches):
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
pC.X = lift(pC.X)
pC.Y = lift(pC.Y)
pC.Z = lift(pC.Z)
pC.Infinity = lift(pC.Infinity)
for key in laws_jacobian_weierstrass:
res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
for key in res:
print " %s:" % key
val = res[key]
for x in val:
if x[0] is not None:
print " branch %i: %s" % (x[1], x[0])
print

View File

@ -0,0 +1,919 @@
@ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm:
/**********************************************************************
* Copyright (c) 2014 Wladimir J. van der Laan *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/*
ARM implementation of field_10x26 inner loops.
Note:
- To avoid unnecessary loads and make use of available registers, two
'passes' have every time been interleaved, with the odd passes accumulating c' and d'
which will be added to c and d respectively in the the even passes
*/
.syntax unified
.arch armv7-a
@ eabi attributes - see readelf -A
.eabi_attribute 8, 1 @ Tag_ARM_ISA_use = yes
.eabi_attribute 9, 0 @ Tag_Thumb_ISA_use = no
.eabi_attribute 10, 0 @ Tag_FP_arch = none
.eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte
.eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP
.eabi_attribute 30, 2 @ Tag_ABI_optimization_goals = Agressive Speed
.eabi_attribute 34, 1 @ Tag_CPU_unaligned_access = v6
.text
@ Field constants
.set field_R0, 0x3d10
.set field_R1, 0x400
.set field_not_M, 0xfc000000 @ ~M = ~0x3ffffff
.align 2
.global secp256k1_fe_mul_inner
.type secp256k1_fe_mul_inner, %function
@ Arguments:
@ r0 r Restrict: can overlap with a, not with b
@ r1 a
@ r2 b
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_mul_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r7,r8 scratch
r1 a (pointer)
r2 b (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A - interleaved with B */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #9*4] @ b[9]
ldr r0, [r1, #1*4] @ a[1]
umull r5, r6, r7, r8 @ d = a[0] * b[9]
ldr r14, [r2, #8*4] @ b[8]
umull r9, r10, r0, r8 @ d' = a[1] * b[9]
ldr r7, [r1, #2*4] @ a[2]
umlal r5, r6, r0, r14 @ d += a[1] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r14 @ d' += a[2] * b[8]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r8 @ d += a[2] * b[7]
ldr r14, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r8 @ d' += a[3] * b[7]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r14 @ d += a[3] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r14 @ d' += a[4] * b[6]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r8 @ d += a[4] * b[5]
ldr r14, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r8 @ d' += a[5] * b[5]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r14 @ d += a[5] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r14 @ d' += a[6] * b[4]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[3]
ldr r14, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r8 @ d' += a[7] * b[3]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[7] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r9, r10, r7, r14 @ d' += a[8] * b[2]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r8 @ d += a[8] * b[1]
ldr r14, [r2, #0*4] @ b[0]
umlal r9, r10, r0, r8 @ d' += a[9] * b[1]
ldr r7, [r1, #0*4] @ a[0]
umlal r5, r6, r0, r14 @ d += a[9] * b[0]
@ r7,r14 used in B
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 4*9]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
umull r3, r4, r7, r14 @ c = a[0] * b[0]
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C - interleaved with D */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #2*4] @ b[2]
ldr r14, [r2, #1*4] @ b[1]
umull r11, r12, r7, r8 @ c' = a[0] * b[2]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[1] * b[1]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[2] * b[0]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r14 @ d += a[2] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[3] * b[9]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r8 @ d += a[3] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[4] * b[8]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r14 @ d += a[4] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[5] * b[7]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r8 @ d += a[5] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r8 @ d' += a[6] * b[6]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r14 @ d' += a[7] * b[5]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r8 @ d' += a[8] * b[4]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r14 @ d' += a[9] * b[3]
umlal r5, r6, r0, r8 @ d += a[9] * b[2]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E - interleaved with F */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #4*4] @ b[4]
umull r11, r12, r7, r8 @ c' = a[0] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r3, r4, r7, r8 @ c += a[0] * b[3]
ldr r7, [r1, #1*4] @ a[1]
umlal r11, r12, r7, r8 @ c' += a[1] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r3, r4, r7, r8 @ c += a[1] * b[2]
ldr r7, [r1, #2*4] @ a[2]
umlal r11, r12, r7, r8 @ c' += a[2] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r3, r4, r7, r8 @ c += a[2] * b[1]
ldr r7, [r1, #3*4] @ a[3]
umlal r11, r12, r7, r8 @ c' += a[3] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r3, r4, r7, r8 @ c += a[3] * b[0]
ldr r7, [r1, #4*4] @ a[4]
umlal r11, r12, r7, r8 @ c' += a[4] * b[0]
ldr r8, [r2, #9*4] @ b[9]
umlal r5, r6, r7, r8 @ d += a[4] * b[9]
ldr r7, [r1, #5*4] @ a[5]
umull r9, r10, r7, r8 @ d' = a[5] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umlal r5, r6, r7, r8 @ d += a[5] * b[8]
ldr r7, [r1, #6*4] @ a[6]
umlal r9, r10, r7, r8 @ d' += a[6] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[7]
ldr r7, [r1, #7*4] @ a[7]
umlal r9, r10, r7, r8 @ d' += a[7] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r5, r6, r7, r8 @ d += a[7] * b[6]
ldr r7, [r1, #8*4] @ a[8]
umlal r9, r10, r7, r8 @ d' += a[8] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r5, r6, r7, r8 @ d += a[8] * b[5]
ldr r7, [r1, #9*4] @ a[9]
umlal r9, r10, r7, r8 @ d' += a[9] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r5, r6, r7, r8 @ d += a[9] * b[4]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G - interleaved with H */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #6*4] @ b[6]
ldr r14, [r2, #5*4] @ b[5]
umull r11, r12, r7, r8 @ c' = a[0] * b[6]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[1] * b[5]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[2] * b[4]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[3] * b[3]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[4] * b[2]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[5] * b[1]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[6] * b[0]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[7] * b[9]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[8] * b[8]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[9] * b[7]
umlal r5, r6, r0, r8 @ d += a[9] * b[6]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I - interleaved with J */
ldr r8, [r2, #8*4] @ b[8]
ldr r7, [r1, #0*4] @ a[0]
ldr r14, [r2, #7*4] @ b[7]
umull r11, r12, r7, r8 @ c' = a[0] * b[8]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r11, r12, r0, r14 @ c' += a[1] * b[7]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r11, r12, r7, r8 @ c' += a[2] * b[6]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[3] * b[5]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[4] * b[4]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[5] * b[3]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[6] * b[2]
ldr r0, [r1, #7*4] @ a[7]
umlal r3, r4, r7, r14 @ c += a[6] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[7] * b[1]
ldr r7, [r1, #8*4] @ a[8]
umlal r3, r4, r0, r8 @ c += a[7] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[8] * b[0]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[9] * b[9]
umlal r5, r6, r0, r8 @ d += a[9] * b[8]
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_mul_inner, .-secp256k1_fe_mul_inner
.align 2
.global secp256k1_fe_sqr_inner
.type secp256k1_fe_sqr_inner, %function
@ Arguments:
@ r0 r Can overlap with a
@ r1 a
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_sqr_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r2,r7,r8 scratch
r1 a (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A interleaved with B */
ldr r0, [r1, #1*4] @ a[1]*2
ldr r7, [r1, #0*4] @ a[0]
mov r0, r0, asl #1
ldr r14, [r1, #9*4] @ a[9]
umull r3, r4, r7, r7 @ c = a[0] * a[0]
ldr r8, [r1, #8*4] @ a[8]
mov r7, r7, asl #1
umull r5, r6, r7, r14 @ d = a[0]*2 * a[9]
ldr r7, [r1, #2*4] @ a[2]*2
umull r9, r10, r0, r14 @ d' = a[1]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[1]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #3*4] @ a[3]*2
umlal r9, r10, r7, r8 @ d' += a[2]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[7]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umlal r9, r10, r0, r14 @ d' += a[3]*2 * a[7]
ldr r14, [r1, #5*4] @ a[5]
mov r7, r7, asl #1
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[6]
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[6]
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[5]
umlal r9, r10, r14, r14 @ d' += a[5] * a[5]
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 9*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C interleaved with D */
ldr r0, [r1, #0*4] @ a[0]*2
ldr r14, [r1, #1*4] @ a[1]
mov r0, r0, asl #1
ldr r8, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r14 @ c += a[0]*2 * a[1]
mov r7, r8, asl #1 @ a[2]*2
umull r11, r12, r14, r14 @ c' = a[1] * a[1]
ldr r14, [r1, #9*4] @ a[9]
umlal r11, r12, r0, r8 @ c' += a[0]*2 * a[2]
ldr r0, [r1, #3*4] @ a[3]*2
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[9]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umull r9, r10, r0, r14 @ d' = a[3]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #5*4] @ a[5]*2
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[7]
umlal r9, r10, r0, r14 @ d' += a[5]*2 * a[7]
umlal r5, r6, r0, r8 @ d += a[5]*2 * a[6]
umlal r9, r10, r8, r8 @ d' += a[6] * a[6]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E interleaved with F */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
ldr r14, [r1, #2*4] @ a[2]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
ldr r2, [r1, #4*4]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[3]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[4]
mov r2, r2, asl #1 @ a[4]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[3]
ldr r8, [r1, #9*4] @ a[9]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[2]
ldr r0, [r1, #5*4] @ a[5]*2
umlal r11, r12, r14, r14 @ c' += a[2] * a[2]
ldr r14, [r1, #8*4] @ a[8]
mov r0, r0, asl #1
umlal r5, r6, r2, r8 @ d += a[4]*2 * a[9]
ldr r7, [r1, #6*4] @ a[6]*2
umull r9, r10, r0, r8 @ d' = a[5]*2 * a[9]
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r14 @ d += a[5]*2 * a[8]
umlal r9, r10, r7, r14 @ d' += a[6]*2 * a[8]
umlal r5, r6, r7, r8 @ d += a[6]*2 * a[7]
umlal r9, r10, r8, r8 @ d' += a[7] * a[7]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G interleaved with H */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #5*4] @ a[5]
ldr r2, [r1, #6*4] @ a[6]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[5]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[6]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[5]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[4]
mov r0, r2, asl #1 @ a[6]*2
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[4]
ldr r14, [r1, #9*4] @ a[9]
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[3]
ldr r7, [r1, #7*4] @ a[7]*2
umlal r11, r12, r8, r8 @ c' += a[3] * a[3]
mov r7, r7, asl #1
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[6]*2 * a[9]
umull r9, r10, r7, r14 @ d' = a[7]*2 * a[9]
umlal r5, r6, r7, r8 @ d += a[7]*2 * a[8]
umlal r9, r10, r8, r8 @ d' += a[8] * a[8]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I interleaved with J */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
ldr r2, [r1, #8*4] @ a[8]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[7]
ldr r14, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[8]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[7]
ldr r8, [r1, #5*4] @ a[5]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[6]
ldr r0, [r1, #3*4] @ a[3]*2
mov r7, r7, asl #1
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[6]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[5]
mov r2, r2, asl #1 @ a[8]*2
umlal r11, r12, r0, r8 @ c' += a[3]*2 * a[5]
umlal r3, r4, r0, r14 @ c += a[3]*2 * a[4]
umlal r11, r12, r14, r14 @ c' += a[4] * a[4]
ldr r8, [r1, #9*4] @ a[9]
umlal r5, r6, r2, r8 @ d += a[8]*2 * a[9]
@ r8 will be used in J
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
umlal r5, r6, r8, r8 @ d += a[9] * a[9]
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner

View File

@ -28,7 +28,8 @@ static void bench_ecdh_setup(void* arg) {
0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
};
data->ctx = secp256k1_context_create(0);
/* create a context with no capabilities */
data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT);
for (i = 0; i < 32; i++) {
data->scalar[i] = i + 1;
}

View File

@ -181,12 +181,12 @@ void bench_field_inverse_var(void* arg) {
}
}
void bench_field_sqrt_var(void* arg) {
void bench_field_sqrt(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_sqrt_var(&data->fe_x, &data->fe_x);
secp256k1_fe_sqrt(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
@ -227,6 +227,15 @@ void bench_group_add_affine_var(void* arg) {
}
}
void bench_group_jacobi_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_gej_has_quad_y_var(&data->gej_x);
}
}
void bench_ecmult_wnaf(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
@ -299,6 +308,21 @@ void bench_context_sign(void* arg) {
}
}
#ifndef USE_NUM_NONE
void bench_num_jacobi(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_num nx, norder;
secp256k1_scalar_get_num(&nx, &data->scalar_x);
secp256k1_scalar_order_get_num(&norder);
secp256k1_scalar_get_num(&norder, &data->scalar_y);
for (i = 0; i < 200000; i++) {
secp256k1_num_jacobi(&nx, &norder);
}
}
#endif
int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
@ -333,12 +357,13 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt_var", bench_field_sqrt_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
@ -350,5 +375,8 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
#ifndef USE_NUM_NONE
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000);
#endif
return 0;
}

View File

@ -11,6 +11,12 @@
#include "util.h"
#include "bench.h"
#ifdef ENABLE_OPENSSL_TESTS
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
#endif
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
@ -19,6 +25,9 @@ typedef struct {
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
#ifdef ENABLE_OPENSSL_TESTS
EC_GROUP* ec_group;
#endif
} benchmark_verify_t;
static void benchmark_verify(void* arg) {
@ -40,6 +49,36 @@ static void benchmark_verify(void* arg) {
}
}
#ifdef ENABLE_OPENSSL_TESTS
static void benchmark_verify_openssl(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
{
EC_KEY *pkey = EC_KEY_new();
const unsigned char *pubkey = &data->pubkey[0];
int result;
CHECK(pkey != NULL);
result = EC_KEY_set_group(pkey, data->ec_group);
CHECK(result);
result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL;
CHECK(result);
result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0);
CHECK(result);
EC_KEY_free(pkey);
}
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#endif
int main(void) {
int i;
secp256k1_pubkey pubkey;
@ -62,6 +101,11 @@ int main(void) {
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
#ifdef ENABLE_OPENSSL_TESTS
data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000);
EC_GROUP_free(data.ec_group);
#endif
secp256k1_context_destroy(data.ctx);
return 0;

View File

@ -58,22 +58,24 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
int global_sign;
int skew = 0;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
#ifdef USE_ENDOMORPHISM
int flip;
int bit;
secp256k1_scalar neg_s;
int not_neg_one;
/* If we are using the endomorphism, we cannot handle even numbers by negating
* them, since we are working with 128-bit numbers whose negations would be 256
* bits, eliminating the performance advantage. Instead we use a technique from
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a technique from
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
* or 2 (for odd) to the number we are encoding, then compensating after the
* multiplication. */
/* Negative 128-bit numbers will be negated, since otherwise they are 256-bit */
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication. */
/* Negative numbers will be negated to keep their bit representation below the maximum width */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ (s.d[0] & 1);
@ -89,11 +91,6 @@ static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
global_sign = secp256k1_scalar_cond_negate(&s, flip);
global_sign *= not_neg_one * 2 - 1;
skew = 1 << bit;
#else
/* Otherwise, we just negate to force oddness */
int is_even = secp256k1_scalar_is_even(&s);
global_sign = secp256k1_scalar_cond_negate(&s, is_even);
#endif
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
@ -127,15 +124,13 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_1;
int skew_lam;
secp256k1_scalar q_1, q_lam;
#else
int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)];
#endif
int i;
@ -145,18 +140,10 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
#ifdef USE_ENDOMORPHISM
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
/* no need for zero correction when using endomorphism since even
* numbers have one added to them anyway */
skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
#else
int is_zero = secp256k1_scalar_is_zero(scalar);
/* the wNAF ladder cannot handle zero, so bump this to one .. we will
* correct the result after the fact */
sc.d[0] += is_zero;
VERIFY_CHECK(!secp256k1_scalar_is_zero(&sc));
secp256k1_wnaf_const(wnaf, sc, WINDOW_A - 1);
skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
#endif
/* Calculate odd multiples of a.
@ -179,21 +166,15 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
#ifdef USE_ENDOMORPHISM
i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#ifdef USE_ENDOMORPHISM
i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
#else
i = wnaf[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#endif
/* remaining loop iterations */
for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
@ -202,59 +183,57 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double_nonzero(r, r, NULL);
}
#ifdef USE_ENDOMORPHISM
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#ifdef USE_ENDOMORPHISM
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#else
n = wnaf[i];
VERIFY_CHECK(n != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
#endif
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
#ifdef USE_ENDOMORPHISM
{
/* Correct for wNAF skew */
secp256k1_ge correction = *a;
secp256k1_ge_storage correction_1_stor;
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage correction_lam_stor;
#endif
secp256k1_ge_storage a2_stor;
secp256k1_gej tmpj;
secp256k1_gej_set_ge(&tmpj, &correction);
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
secp256k1_ge_set_gej(&correction, &tmpj);
secp256k1_ge_to_storage(&correction_1_stor, a);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_to_storage(&correction_lam_stor, a);
#endif
secp256k1_ge_to_storage(&a2_stor, &correction);
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
#endif
/* Apply the correction */
secp256k1_ge_from_storage(&correction, &correction_1_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_ge_mul_lambda(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
}
#else
/* correct for zero */
r->infinity |= is_zero;
#endif
}
}
#endif

View File

@ -11,6 +11,8 @@
#include "scalar.h"
#include "ecmult.h"
#include <string.h>
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5

View File

@ -57,6 +57,9 @@ static int secp256k1_fe_is_zero(const secp256k1_fe *a);
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Same as secp256k1_fe_equal, but may be variable time. */
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
@ -92,7 +95,10 @@ static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */

View File

@ -7,8 +7,6 @@
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#include <stdio.h>
#include <string.h>
#include "util.h"
#include "num.h"
#include "field.h"
@ -429,6 +427,14 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_f
#endif
}
#if defined(USE_EXTERNAL_ASM)
/* External assembler implementation */
void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b);
void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a);
#else
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#else
@ -1037,7 +1043,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t
VERIFY_BITS(r[2], 27);
/* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY

View File

@ -11,7 +11,6 @@
#include "libsecp256k1-config.h"
#endif
#include <string.h>
#include "util.h"
#include "num.h"
#include "field.h"

View File

@ -137,7 +137,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;;
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
@ -259,7 +259,7 @@ SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;;
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;

View File

@ -21,6 +21,13 @@
#error "Please select field implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
@ -28,7 +35,7 @@ SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
@ -123,7 +130,7 @@ static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal_var(&t1, a);
return secp256k1_fe_equal(&t1, a);
}
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
@ -280,4 +287,29 @@ static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k
r[0] = u;
}
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
#ifndef USE_NUM_NONE
unsigned char b[32];
secp256k1_num n;
secp256k1_num m;
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
return secp256k1_num_jacobi(&n, &m) >= 0;
#else
secp256k1_fe r;
return secp256k1_fe_sqrt(&r, a);
#endif
}
#endif

View File

@ -47,7 +47,7 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se
* and a Y coordinate that is a quadratic residue modulo p. The return value
* is true iff a coordinate with the given X coordinate exists.
*/
static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x);
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
@ -94,6 +94,9 @@ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Check whether a group element's y coordinate is a quadratic residue. */
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
* a may not be zero. Constant time. */
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);

View File

@ -7,8 +7,6 @@
#ifndef _SECP256K1_GROUP_IMPL_H_
#define _SECP256K1_GROUP_IMPL_H_
#include <string.h>
#include "num.h"
#include "field.h"
#include "group.h"
@ -165,7 +163,7 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
secp256k1_fe_clear(&r->y);
}
static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) {
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
@ -173,11 +171,11 @@ static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) {
r->infinity = 0;
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3);
return secp256k1_fe_sqrt_var(&r->y, &c);
return secp256k1_fe_sqrt(&r->y, &c);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
if (!secp256k1_ge_set_xquad_var(r, x)) {
if (!secp256k1_ge_set_xquad(r, x)) {
return 0;
}
secp256k1_fe_normalize_var(&r->y);
@ -251,11 +249,23 @@ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
*
* Note that there is an implementation described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
* which trades a multiply for a square, but in practice this is actually slower,
* mainly because it requires more normalizations.
*/
secp256k1_fe t1,t2,t3,t4;
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
*
* Having said this, if this function receives a point on a sextic twist, e.g. by
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
* since -6 does have a cube root mod p. For this point, this function will not set
* the infinity flag even though the point doubles to infinity, and the result
* point will be gibberish (z = 0 but infinity = 0).
*/
r->infinity = a->infinity;
if (r->infinity) {
@ -623,4 +633,18 @@ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
}
#endif
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
secp256k1_fe yz;
if (a->infinity) {
return 0;
}
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
is */
secp256k1_fe_mul(&yz, &a->y, &a->z);
return secp256k1_fe_is_quad_var(&yz);
}
#endif

View File

@ -11,7 +11,7 @@
#include <stdint.h>
typedef struct {
uint32_t s[32];
uint32_t s[8];
uint32_t buf[16]; /* In big endian */
size_t bytes;
} secp256k1_sha256_t;

View File

@ -269,15 +269,13 @@ static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256
rng->retry = 0;
}
#undef BE32
#undef Round
#undef sigma0
#undef sigma1
#undef Sigma0
#undef sigma0
#undef Sigma1
#undef Ch
#undef Sigma0
#undef Maj
#undef ReadBE32
#undef WriteBE32
#undef Ch
#endif

View File

@ -1,60 +1,478 @@
/*
* Copyright 2013 Google Inc.
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.math.BigInteger;
import com.google.common.base.Preconditions;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import static org.bitcoin.NativeSecp256k1Util.*;
/**
* This class holds native methods to handle ECDSA verification.
* You can find an example library that can be used for this at
* https://github.com/sipa/secp256k1
* <p>This class holds native methods to handle ECDSA verification.</p>
*
* <p>You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1</p>
*
* <p>To build secp256k1 for use with bitcoinj, run
* `./configure --enable-jni --enable-experimental --enable-module-schnorr --enable-module-ecdh`
* and `make` then copy `.libs/libsecp256k1.so` to your system library path
* or point the JVM to the folder containing it with -Djava.library.path
* </p>
*/
public class NativeSecp256k1 {
public static final boolean enabled;
static {
boolean isEnabled = true;
try {
System.loadLibrary("javasecp256k1");
} catch (UnsatisfiedLinkError e) {
isEnabled = false;
}
enabled = isEnabled;
}
private static final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private static final Lock r = rwl.readLock();
private static final Lock w = rwl.writeLock();
private static ThreadLocal<ByteBuffer> nativeECDSABuffer = new ThreadLocal<ByteBuffer>();
/**
* Verifies the given secp256k1 signature in native code.
* Calling when enabled == false is undefined (probably library not loaded)
*
*
* @param data The data which was signed, must be exactly 32 bytes
* @param signature The signature
* @param pub The public key which did the signing
*/
public static boolean verify(byte[] data, byte[] signature, byte[] pub) {
public static boolean verify(byte[] data, byte[] signature, byte[] pub) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null) {
byteBuff = ByteBuffer.allocateDirect(32 + 8 + 520 + 520);
if (byteBuff == null || byteBuff.capacity() < 520) {
byteBuff = ByteBuffer.allocateDirect(520);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.putInt(signature.length);
byteBuff.putInt(pub.length);
byteBuff.put(signature);
byteBuff.put(pub);
return secp256k1_ecdsa_verify(byteBuff) == 1;
byte[][] retByteArray;
r.lock();
try {
return secp256k1_ecdsa_verify(byteBuff, Secp256k1Context.getContext(), signature.length, pub.length) == 1;
} finally {
r.unlock();
}
}
/**
* @param byteBuff signature format is byte[32] data,
* native-endian int signatureLength, native-endian int pubkeyLength,
* byte[signatureLength] signature, byte[pubkeyLength] pub
* @returns 1 for valid signature, anything else for invalid
* libsecp256k1 Create an ECDSA signature.
*
* @param data Message hash, 32 bytes
* @param key Secret key, 32 bytes
*
* Return values
* @param sig byte array of signature
*/
private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff);
public static byte[] sign(byte[] data, byte[] sec) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 32 + 32) {
byteBuff = ByteBuffer.allocateDirect(32 + 32);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(sec);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ecdsa_sign(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] sigArr = retByteArray[0];
int sigLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(sigArr.length, sigLen, "Got bad signature length.");
return retVal == 0 ? new byte[0] : sigArr;
}
/**
* libsecp256k1 Seckey Verify - returns 1 if valid, 0 if invalid
*
* @param seckey ECDSA Secret key, 32 bytes
*/
public static boolean secKeyVerify(byte[] seckey) {
Preconditions.checkArgument(seckey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seckey.length) {
byteBuff = ByteBuffer.allocateDirect(seckey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
r.lock();
try {
return secp256k1_ec_seckey_verify(byteBuff,Secp256k1Context.getContext()) == 1;
} finally {
r.unlock();
}
}
/**
* libsecp256k1 Compute Pubkey - computes public key from secret key
*
* @param seckey ECDSA Secret key, 32 bytes
*
* Return values
* @param pubkey ECDSA Public key, 33 or 65 bytes
*/
//TODO add a 'compressed' arg
public static byte[] computePubkey(byte[] seckey) throws AssertFailException{
Preconditions.checkArgument(seckey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seckey.length) {
byteBuff = ByteBuffer.allocateDirect(seckey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ec_pubkey_create(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
return retVal == 0 ? new byte[0]: pubArr;
}
/**
* libsecp256k1 Cleanup - This destroys the secp256k1 context object
* This should be called at the end of the program for proper cleanup of the context.
*/
public static synchronized void cleanup() {
w.lock();
try {
secp256k1_destroy_context(Secp256k1Context.getContext());
} finally {
w.unlock();
}
}
public static long cloneContext() {
r.lock();
try {
return secp256k1_ctx_clone(Secp256k1Context.getContext());
} finally { r.unlock(); }
}
/**
* libsecp256k1 PrivKey Tweak-Mul - Tweak privkey by multiplying to it
*
* @param tweak some bytes to tweak with
* @param seckey 32-byte seckey
*/
public static byte[] privKeyTweakMul(byte[] privkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(privkey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(privkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_privkey_tweak_mul(byteBuff,Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] privArr = retByteArray[0];
int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(privArr.length, privLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return privArr;
}
/**
* libsecp256k1 PrivKey Tweak-Add - Tweak privkey by adding to it
*
* @param tweak some bytes to tweak with
* @param seckey 32-byte seckey
*/
public static byte[] privKeyTweakAdd(byte[] privkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(privkey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(privkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_privkey_tweak_add(byteBuff,Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] privArr = retByteArray[0];
int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(privArr.length, privLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return privArr;
}
/**
* libsecp256k1 PubKey Tweak-Add - Tweak pubkey by adding to it
*
* @param tweak some bytes to tweak with
* @param pubkey 32-byte seckey
*/
public static byte[] pubKeyTweakAdd(byte[] pubkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(pubkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_pubkey_tweak_add(byteBuff,Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return pubArr;
}
/**
* libsecp256k1 PubKey Tweak-Mul - Tweak pubkey by multiplying to it
*
* @param tweak some bytes to tweak with
* @param pubkey 32-byte seckey
*/
public static byte[] pubKeyTweakMul(byte[] pubkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(pubkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_pubkey_tweak_mul(byteBuff,Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return pubArr;
}
/**
* libsecp256k1 create ECDH secret - constant time ECDH calculation
*
* @param seckey byte array of secret key used in exponentiaion
* @param pubkey byte array of public key used in exponentiaion
*/
public static byte[] createECDHSecret(byte[] seckey, byte[] pubkey) throws AssertFailException{
Preconditions.checkArgument(seckey.length <= 32 && pubkey.length <= 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 32 + pubkey.length) {
byteBuff = ByteBuffer.allocateDirect(32 + pubkey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
byteBuff.put(pubkey);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ecdh(byteBuff, Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] resArr = retByteArray[0];
int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
assertEquals(resArr.length, 32, "Got bad result length.");
assertEquals(retVal, 1, "Failed return value check.");
return resArr;
}
/**
* libsecp256k1 randomize - updates the context randomization
*
* @param seed 32-byte random seed
*/
public static synchronized boolean randomize(byte[] seed) throws AssertFailException{
Preconditions.checkArgument(seed.length == 32 || seed == null);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seed.length) {
byteBuff = ByteBuffer.allocateDirect(seed.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seed);
w.lock();
try {
return secp256k1_context_randomize(byteBuff, Secp256k1Context.getContext()) == 1;
} finally {
w.unlock();
}
}
public static byte[] schnorrSign(byte[] data, byte[] sec) throws AssertFailException {
Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null) {
byteBuff = ByteBuffer.allocateDirect(32 + 32);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(sec);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_schnorr_sign(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] sigArr = retByteArray[0];
int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
assertEquals(sigArr.length, 64, "Got bad signature length.");
return retVal == 0 ? new byte[0] : sigArr;
}
private static native long secp256k1_ctx_clone(long context);
private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_privkey_tweak_add(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_privkey_tweak_mul(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_pubkey_tweak_add(ByteBuffer byteBuff, long context, int pubLen);
private static native byte[][] secp256k1_pubkey_tweak_mul(ByteBuffer byteBuff, long context, int pubLen);
private static native void secp256k1_destroy_context(long context);
private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff, long context, int sigLen, int pubLen);
private static native byte[][] secp256k1_ecdsa_sign(ByteBuffer byteBuff, long context);
private static native int secp256k1_ec_seckey_verify(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ec_pubkey_create(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen);
private static native byte[][] secp256k1_schnorr_sign(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen);
}

View File

@ -0,0 +1,247 @@
package org.bitcoin;
import com.google.common.io.BaseEncoding;
import java.util.Arrays;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;
import static org.bitcoin.NativeSecp256k1Util.*;
/**
* This class holds test cases defined for testing this library.
*/
public class NativeSecp256k1Test {
//TODO improve comments/add more tests
/**
* This tests verify() for a valid signature
*/
public static void testVerifyPos() throws AssertFailException{
boolean result = false;
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
result = NativeSecp256k1.verify( data, sig, pub);
assertEquals( result, true , "testVerifyPos");
}
/**
* This tests verify() for a non-valid signature
*/
public static void testVerifyNeg() throws AssertFailException{
boolean result = false;
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91".toLowerCase()); //sha256hash of "testing"
byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
result = NativeSecp256k1.verify( data, sig, pub);
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, false , "testVerifyNeg");
}
/**
* This tests secret key verify() for a valid secretkey
*/
public static void testSecKeyVerifyPos() throws AssertFailException{
boolean result = false;
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
result = NativeSecp256k1.secKeyVerify( sec );
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, true , "testSecKeyVerifyPos");
}
/**
* This tests secret key verify() for a invalid secretkey
*/
public static void testSecKeyVerifyNeg() throws AssertFailException{
boolean result = false;
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
result = NativeSecp256k1.secKeyVerify( sec );
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, false , "testSecKeyVerifyNeg");
}
/**
* This tests public key create() for a valid secretkey
*/
public static void testPubKeyCreatePos() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.computePubkey( sec);
String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( pubkeyString , "04C591A8FF19AC9C4E4E5793673B83123437E975285E7B442F4EE2654DFFCA5E2D2103ED494718C697AC9AEBCFD19612E224DB46661011863ED2FC54E71861E2A6" , "testPubKeyCreatePos");
}
/**
* This tests public key create() for a invalid secretkey
*/
public static void testPubKeyCreateNeg() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
byte[] resultArr = NativeSecp256k1.computePubkey( sec);
String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( pubkeyString, "" , "testPubKeyCreateNeg");
}
/**
* This tests sign() for a valid secretkey
*/
public static void testSignPos() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.sign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "30440220182A108E1448DC8F1FB467D06A0F3BB8EA0533584CB954EF8DA112F1D60E39A202201C66F36DA211C087F3AF88B50EDF4F9BDAA6CF5FD6817E74DCA34DB12390C6E9" , "testSignPos");
}
/**
* This tests sign() for a invalid secretkey
*/
public static void testSignNeg() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
byte[] resultArr = NativeSecp256k1.sign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "" , "testSignNeg");
}
/**
* This tests private key tweak-add
*/
public static void testPrivKeyTweakAdd_1() throws AssertFailException {
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.privKeyTweakAdd( sec , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "A168571E189E6F9A7E2D657A4B53AE99B909F7E712D1C23CED28093CD57C88F3" , "testPrivKeyAdd_1");
}
/**
* This tests private key tweak-mul
*/
public static void testPrivKeyTweakMul_1() throws AssertFailException {
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.privKeyTweakMul( sec , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "97F8184235F101550F3C71C927507651BD3F1CDB4A5A33B8986ACF0DEE20FFFC" , "testPrivKeyMul_1");
}
/**
* This tests private key tweak-add uncompressed
*/
public static void testPrivKeyTweakAdd_2() throws AssertFailException {
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.pubKeyTweakAdd( pub , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "0411C6790F4B663CCE607BAAE08C43557EDC1A4D11D88DFCB3D841D0C6A941AF525A268E2A863C148555C48FB5FBA368E88718A46E205FABC3DBA2CCFFAB0796EF" , "testPrivKeyAdd_2");
}
/**
* This tests private key tweak-mul uncompressed
*/
public static void testPrivKeyTweakMul_2() throws AssertFailException {
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.pubKeyTweakMul( pub , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "04E0FE6FE55EBCA626B98A807F6CAF654139E14E5E3698F01A9A658E21DC1D2791EC060D4F412A794D5370F672BC94B722640B5F76914151CFCA6E712CA48CC589" , "testPrivKeyMul_2");
}
/**
* This tests seed randomization
*/
public static void testRandomize() throws AssertFailException {
byte[] seed = BaseEncoding.base16().lowerCase().decode("A441B15FE9A3CF56661190A0B93B9DEC7D04127288CC87250967CF3B52894D11".toLowerCase()); //sha256hash of "random"
boolean result = NativeSecp256k1.randomize(seed);
assertEquals( result, true, "testRandomize");
}
/**
* This tests signSchnorr() for a valid secretkey
*/
public static void testSchnorrSign() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.schnorrSign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "C5E929AA058B982048760422D3B563749B7D0E50C5EBD8CD2FFC23214BD6A2F1B072C13880997EBA847CF20F2F90FCE07C1CA33A890A4127095A351127F8D95F" , "testSchnorrSign");
}
/**
* This tests signSchnorr() for a valid secretkey
*/
public static void testCreateECDHSecret() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] resultArr = NativeSecp256k1.createECDHSecret(sec, pub);
String ecdhString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( ecdhString, "2A2A67007A926E6594AF3EB564FC74005B37A9C8AEF2033C4552051B5C87F043" , "testCreateECDHSecret");
}
public static void main(String[] args) throws AssertFailException{
System.out.println("\n libsecp256k1 enabled: " + Secp256k1Context.isEnabled() + "\n");
assertEquals( Secp256k1Context.isEnabled(), true, "isEnabled" );
//Test verify() success/fail
testVerifyPos();
testVerifyNeg();
//Test secKeyVerify() success/fail
testSecKeyVerifyPos();
testSecKeyVerifyNeg();
//Test computePubkey() success/fail
testPubKeyCreatePos();
testPubKeyCreateNeg();
//Test sign() success/fail
testSignPos();
testSignNeg();
//Test Schnorr (partial support) //TODO
testSchnorrSign();
//testSchnorrVerify
//testSchnorrRecovery
//Test privKeyTweakAdd() 1
testPrivKeyTweakAdd_1();
//Test privKeyTweakMul() 2
testPrivKeyTweakMul_1();
//Test privKeyTweakAdd() 3
testPrivKeyTweakAdd_2();
//Test privKeyTweakMul() 4
testPrivKeyTweakMul_2();
//Test randomize()
testRandomize();
//Test ECDH
testCreateECDHSecret();
NativeSecp256k1.cleanup();
System.out.println(" All tests passed." );
}
}

View File

@ -0,0 +1,45 @@
/*
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
public class NativeSecp256k1Util{
public static void assertEquals( int val, int val2, String message ) throws AssertFailException{
if( val != val2 )
throw new AssertFailException("FAIL: " + message);
}
public static void assertEquals( boolean val, boolean val2, String message ) throws AssertFailException{
if( val != val2 )
throw new AssertFailException("FAIL: " + message);
else
System.out.println("PASS: " + message);
}
public static void assertEquals( String val, String val2, String message ) throws AssertFailException{
if( !val.equals(val2) )
throw new AssertFailException("FAIL: " + message);
else
System.out.println("PASS: " + message);
}
public static class AssertFailException extends Exception {
public AssertFailException(String message) {
super( message );
}
}
}

View File

@ -0,0 +1,51 @@
/*
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
/**
* This class holds the context reference used in native methods
* to handle ECDSA operations.
*/
public class Secp256k1Context {
private static final boolean enabled; //true if the library is loaded
private static final long context; //ref to pointer to context obj
static { //static initializer
boolean isEnabled = true;
long contextRef = -1;
try {
System.loadLibrary("secp256k1");
contextRef = secp256k1_init_context();
} catch (UnsatisfiedLinkError e) {
System.out.println("UnsatisfiedLinkError: " + e.toString());
isEnabled = false;
}
enabled = isEnabled;
context = contextRef;
}
public static boolean isEnabled() {
return enabled;
}
public static long getContext() {
if(!enabled) return -1; //sanity check
return context;
}
private static native long secp256k1_init_context();
}

View File

@ -1,23 +1,411 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "org_bitcoin_NativeSecp256k1.h"
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "include/secp256k1_recovery.h"
#include "include/secp256k1_schnorr.h"
JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject)
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
(JNIEnv* env, jclass classObject, jlong ctx_l)
{
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
int sigLen = *((int*)(data + 32));
int pubLen = *((int*)(data + 32 + 4));
const secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
jlong ctx_clone_l = (uintptr_t) secp256k1_context_clone(ctx);
(void)classObject;(void)env;
return ctx_clone_l;
return secp256k1_ecdsa_verify(data, 32, data+32+8, sigLen, data+32+8+sigLen, pubLen);
}
static void __javasecp256k1_attach(void) __attribute__((constructor));
static void __javasecp256k1_detach(void) __attribute__((destructor));
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* seed = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
(void)classObject;
return secp256k1_context_randomize(ctx, seed);
static void __javasecp256k1_attach(void) {
secp256k1_start(SECP256K1_START_VERIFY);
}
static void __javasecp256k1_detach(void) {
secp256k1_stop();
SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
(JNIEnv* env, jclass classObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
secp256k1_context_destroy(ctx);
(void)classObject;(void)env;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint siglen, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* sigdata = { (unsigned char*) (data + 32) };
const unsigned char* pubdata = { (unsigned char*) (data + siglen + 32) };
secp256k1_ecdsa_signature sig;
secp256k1_pubkey pubkey;
int ret = secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigdata, siglen);
if( ret ) {
ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
if( ret ) {
ret = secp256k1_ecdsa_verify(ctx, &sig, data, &pubkey);
}
}
(void)classObject;
return ret;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
unsigned char* secKey = (unsigned char*) (data + 32);
jobjectArray retArray;
jbyteArray sigArray, intsByteArray;
unsigned char intsarray[2];
secp256k1_ecdsa_signature sig[72];
int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL );
unsigned char outputSer[72];
size_t outputLen = 72;
if( ret ) {
int ret2 = secp256k1_ecdsa_signature_serialize_der(ctx,outputSer, &outputLen, sig ); (void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
sigArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, sigArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
(void)classObject;
return secp256k1_ec_seckey_verify(ctx, secKey);
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
secp256k1_pubkey pubkey;
jobjectArray retArray;
jbyteArray pubkeyArray, intsByteArray;
unsigned char intsarray[2];
int ret = secp256k1_ec_pubkey_create(ctx, &pubkey, secKey);
unsigned char outputSer[65];
size_t outputLen = 65;
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubkeyArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubkeyArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubkeyArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (privkey + 32);
jobjectArray retArray;
jbyteArray privArray, intsByteArray;
unsigned char intsarray[2];
int privkeylen = 32;
int ret = secp256k1_ec_privkey_tweak_add(ctx, privkey, tweak);
intsarray[0] = privkeylen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
privArray = (*env)->NewByteArray(env, privkeylen);
(*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
(*env)->SetObjectArrayElement(env, retArray, 0, privArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (privkey + 32);
jobjectArray retArray;
jbyteArray privArray, intsByteArray;
unsigned char intsarray[2];
int privkeylen = 32;
int ret = secp256k1_ec_privkey_tweak_mul(ctx, privkey, tweak);
intsarray[0] = privkeylen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
privArray = (*env)->NewByteArray(env, privkeylen);
(*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
(*env)->SetObjectArrayElement(env, retArray, 0, privArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
/* secp256k1_pubkey* pubkey = (secp256k1_pubkey*) (*env)->GetDirectBufferAddress(env, byteBufferObject);*/
unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (pkey + publen);
jobjectArray retArray;
jbyteArray pubArray, intsByteArray;
unsigned char intsarray[2];
unsigned char outputSer[65];
size_t outputLen = 65;
secp256k1_pubkey pubkey;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
if( ret ) {
ret = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, tweak);
}
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (pkey + publen);
jobjectArray retArray;
jbyteArray pubArray, intsByteArray;
unsigned char intsarray[2];
unsigned char outputSer[65];
size_t outputLen = 65;
secp256k1_pubkey pubkey;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
if ( ret ) {
ret = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, tweak);
}
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1pubkey_1combine
(JNIEnv * env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint numkeys)
{
(void)classObject;(void)env;(void)byteBufferObject;(void)ctx_l;(void)numkeys;
return 0;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1schnorr_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
unsigned char* secKey = (unsigned char*) (data + 32);
jobjectArray retArray;
jbyteArray sigArray, intsByteArray;
unsigned char intsarray[1];
unsigned char sig[64];
int ret = secp256k1_schnorr_sign(ctx, sig, data, secKey, NULL, NULL);
intsarray[0] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
sigArray = (*env)->NewByteArray(env, 64);
(*env)->SetByteArrayRegion(env, sigArray, 0, 64, (jbyte*)sig);
(*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
intsByteArray = (*env)->NewByteArray(env, 1);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* secdata = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* pubdata = (const unsigned char*) (secdata + 32);
jobjectArray retArray;
jbyteArray outArray, intsByteArray;
unsigned char intsarray[1];
secp256k1_pubkey pubkey;
unsigned char nonce_res[32];
size_t outputLen = 32;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
if (ret) {
ret = secp256k1_ecdh(
ctx,
nonce_res,
&pubkey,
secdata
);
}
intsarray[0] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
outArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, outArray, 0, 32, (jbyte*)nonce_res);
(*env)->SetObjectArrayElement(env, retArray, 0, outArray);
intsByteArray = (*env)->NewByteArray(env, 1);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}

View File

@ -1,5 +1,6 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
#include "include/secp256k1.h"
/* Header for class org_bitcoin_NativeSecp256k1 */
#ifndef _Included_org_bitcoin_NativeSecp256k1
@ -9,11 +10,116 @@ extern "C" {
#endif
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_verify
* Signature: (Ljava/nio/ByteBuffer;)I
* Method: secp256k1_ctx_clone
* Signature: (J)J
*/
JNIEXPORT jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv *, jclass, jobject);
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
(JNIEnv *, jclass, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_context_randomize
* Signature: (Ljava/nio/ByteBuffer;J)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_privkey_tweak_add
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_privkey_tweak_mul
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_pubkey_tweak_add
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_pubkey_tweak_mul
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_destroy_context
* Signature: (J)V
*/
SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
(JNIEnv *, jclass, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_verify
* Signature: (Ljava/nio/ByteBuffer;JII)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv *, jclass, jobject, jlong, jint, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_sign
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_seckey_verify
* Signature: (Ljava/nio/ByteBuffer;J)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_pubkey_create
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_pubkey_parse
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_schnorr_sign
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1schnorr_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdh
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen);
#ifdef __cplusplus
}

View File

@ -0,0 +1,15 @@
#include <stdlib.h>
#include <stdint.h>
#include "org_bitcoin_Secp256k1Context.h"
#include "include/secp256k1.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv* env, jclass classObject)
{
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
(void)classObject;(void)env;
return (uintptr_t)ctx;
}

View File

@ -0,0 +1,22 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
#include "include/secp256k1.h"
/* Header for class org_bitcoin_Secp256k1Context */
#ifndef _Included_org_bitcoin_Secp256k1Context
#define _Included_org_bitcoin_Secp256k1Context
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: org_bitcoin_Secp256k1Context
* Method: secp256k1_init_context
* Signature: ()J
*/
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv *, jclass);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -4,5 +4,5 @@ noinst_HEADERS += src/modules/ecdh/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_ecdh
bench_ecdh_SOURCES = src/bench_ecdh.c
bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

View File

@ -4,5 +4,5 @@ noinst_HEADERS += src/modules/recovery/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_recover
bench_recover_SOURCES = src/bench_recover.c
bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

View File

@ -6,5 +6,5 @@ noinst_HEADERS += src/modules/schnorr/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_schnorr_verify
bench_schnorr_verify_SOURCES = src/bench_schnorr_verify.c
bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_schnorr_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

View File

@ -32,6 +32,9 @@ static void secp256k1_num_set_bin(secp256k1_num *r, const unsigned char *a, unsi
/** Compute a modular inverse. The input must be less than the modulus. */
static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a, const secp256k1_num *m);
/** Compute the jacobi symbol (a|b). b must be positive and odd. */
static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b);
/** Compare the absolute value of two numbers. */
static int secp256k1_num_cmp(const secp256k1_num *a, const secp256k1_num *b);
@ -57,6 +60,9 @@ static void secp256k1_num_shift(secp256k1_num *r, int bits);
/** Check whether a number is zero. */
static int secp256k1_num_is_zero(const secp256k1_num *a);
/** Check whether a number is one. */
static int secp256k1_num_is_one(const secp256k1_num *a);
/** Check whether a number is strictly negative. */
static int secp256k1_num_is_neg(const secp256k1_num *a);

View File

@ -144,6 +144,32 @@ static void secp256k1_num_mod_inverse(secp256k1_num *r, const secp256k1_num *a,
memset(v, 0, sizeof(v));
}
static int secp256k1_num_jacobi(const secp256k1_num *a, const secp256k1_num *b) {
int ret;
mpz_t ga, gb;
secp256k1_num_sanity(a);
secp256k1_num_sanity(b);
VERIFY_CHECK(!b->neg && (b->limbs > 0) && (b->data[0] & 1));
mpz_inits(ga, gb, NULL);
mpz_import(gb, b->limbs, -1, sizeof(mp_limb_t), 0, 0, b->data);
mpz_import(ga, a->limbs, -1, sizeof(mp_limb_t), 0, 0, a->data);
if (a->neg) {
mpz_neg(ga, ga);
}
ret = mpz_jacobi(ga, gb);
mpz_clears(ga, gb, NULL);
return ret;
}
static int secp256k1_num_is_one(const secp256k1_num *a) {
return (a->limbs == 1 && a->data[0] == 1);
}
static int secp256k1_num_is_zero(const secp256k1_num *a) {
return (a->limbs == 1 && a->data[0] == 0);
}

View File

@ -7,8 +7,6 @@
#ifndef _SECP256K1_SCALAR_IMPL_H_
#define _SECP256K1_SCALAR_IMPL_H_
#include <string.h>
#include "group.h"
#include "scalar.h"

View File

@ -4,8 +4,6 @@
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#define SECP256K1_BUILD (1)
#include "include/secp256k1.h"
#include "util.h"
@ -152,7 +150,6 @@ static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
secp256k1_ge Q;
(void)ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
@ -170,7 +167,6 @@ int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *o
size_t len;
int ret = 0;
(void)ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
@ -216,7 +212,7 @@ static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const
int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
secp256k1_scalar r, s;
(void)ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input != NULL);
@ -234,7 +230,7 @@ int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp25
int ret = 1;
int overflow = 0;
(void)ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(input64 != NULL);
@ -253,7 +249,7 @@ int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp25
int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
(void)ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(outputlen != NULL);
ARG_CHECK(sig != NULL);
@ -265,7 +261,7 @@ int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsign
int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
secp256k1_scalar r, s;
(void)ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output64 != NULL);
ARG_CHECK(sig != NULL);
@ -398,7 +394,6 @@ int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
(void)ctx;
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
ret = !overflow && !secp256k1_scalar_is_zero(&sec);
@ -437,7 +432,6 @@ int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
(void)ctx;
secp256k1_scalar_set_b32(&term, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);
@ -485,7 +479,6 @@ int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(seckey != NULL);
ARG_CHECK(tweak != NULL);
(void)ctx;
secp256k1_scalar_set_b32(&factor, tweak, &overflow);
secp256k1_scalar_set_b32(&sec, seckey, NULL);

View File

@ -473,6 +473,8 @@ void test_num_negate(void) {
}
void test_num_add_sub(void) {
int i;
secp256k1_scalar s;
secp256k1_num n1;
secp256k1_num n2;
secp256k1_num n1p2, n2p1, n1m2, n2m1;
@ -498,6 +500,110 @@ void test_num_add_sub(void) {
CHECK(!secp256k1_num_eq(&n2p1, &n1));
secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
CHECK(secp256k1_num_eq(&n2p1, &n1));
/* check is_one */
secp256k1_scalar_set_int(&s, 1);
secp256k1_scalar_get_num(&n1, &s);
CHECK(secp256k1_num_is_one(&n1));
/* check that 2^n + 1 is never 1 */
secp256k1_scalar_get_num(&n2, &s);
for (i = 0; i < 250; ++i) {
secp256k1_num_add(&n1, &n1, &n1); /* n1 *= 2 */
secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = n1 + 1 */
CHECK(!secp256k1_num_is_one(&n1p2));
}
}
void test_num_mod(void) {
int i;
secp256k1_scalar s;
secp256k1_num order, n;
/* check that 0 mod anything is 0 */
random_scalar_order_test(&s);
secp256k1_scalar_get_num(&order, &s);
secp256k1_scalar_set_int(&s, 0);
secp256k1_scalar_get_num(&n, &s);
secp256k1_num_mod(&n, &order);
CHECK(secp256k1_num_is_zero(&n));
/* check that anything mod 1 is 0 */
secp256k1_scalar_set_int(&s, 1);
secp256k1_scalar_get_num(&order, &s);
secp256k1_scalar_get_num(&n, &s);
secp256k1_num_mod(&n, &order);
CHECK(secp256k1_num_is_zero(&n));
/* check that increasing the number past 2^256 does not break this */
random_scalar_order_test(&s);
secp256k1_scalar_get_num(&n, &s);
/* multiply by 2^8, which'll test this case with high probability */
for (i = 0; i < 8; ++i) {
secp256k1_num_add(&n, &n, &n);
}
secp256k1_num_mod(&n, &order);
CHECK(secp256k1_num_is_zero(&n));
}
void test_num_jacobi(void) {
secp256k1_scalar sqr;
secp256k1_scalar small;
secp256k1_scalar five; /* five is not a quadratic residue */
secp256k1_num order, n;
int i;
/* squares mod 5 are 1, 4 */
const int jacobi5[10] = { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1 };
/* check some small values with 5 as the order */
secp256k1_scalar_set_int(&five, 5);
secp256k1_scalar_get_num(&order, &five);
for (i = 0; i < 10; ++i) {
secp256k1_scalar_set_int(&small, i);
secp256k1_scalar_get_num(&n, &small);
CHECK(secp256k1_num_jacobi(&n, &order) == jacobi5[i]);
}
/** test large values with 5 as group order */
secp256k1_scalar_get_num(&order, &five);
/* we first need a scalar which is not a multiple of 5 */
do {
secp256k1_num fiven;
random_scalar_order_test(&sqr);
secp256k1_scalar_get_num(&fiven, &five);
secp256k1_scalar_get_num(&n, &sqr);
secp256k1_num_mod(&n, &fiven);
} while (secp256k1_num_is_zero(&n));
/* next force it to be a residue. 2 is a nonresidue mod 5 so we can
* just multiply by two, i.e. add the number to itself */
if (secp256k1_num_jacobi(&n, &order) == -1) {
secp256k1_num_add(&n, &n, &n);
}
/* test residue */
CHECK(secp256k1_num_jacobi(&n, &order) == 1);
/* test nonresidue */
secp256k1_num_add(&n, &n, &n);
CHECK(secp256k1_num_jacobi(&n, &order) == -1);
/** test with secp group order as order */
secp256k1_scalar_order_get_num(&order);
random_scalar_order_test(&sqr);
secp256k1_scalar_sqr(&sqr, &sqr);
/* test residue */
secp256k1_scalar_get_num(&n, &sqr);
CHECK(secp256k1_num_jacobi(&n, &order) == 1);
/* test nonresidue */
secp256k1_scalar_mul(&sqr, &sqr, &five);
secp256k1_scalar_get_num(&n, &sqr);
CHECK(secp256k1_num_jacobi(&n, &order) == -1);
/* test multiple of the order*/
CHECK(secp256k1_num_jacobi(&order, &order) == 0);
/* check one less than the order */
secp256k1_scalar_set_int(&small, 1);
secp256k1_scalar_get_num(&n, &small);
secp256k1_num_sub(&n, &order, &n);
CHECK(secp256k1_num_jacobi(&n, &order) == 1); /* sage confirms this is 1 */
}
void run_num_smalltests(void) {
@ -505,6 +611,8 @@ void run_num_smalltests(void) {
for (i = 0; i < 100*count; i++) {
test_num_negate();
test_num_add_sub();
test_num_mod();
test_num_jacobi();
}
}
#endif
@ -689,6 +797,10 @@ void scalar_test(void) {
secp256k1_scalar_inverse(&inv, &inv);
/* Inverting one must result in one. */
CHECK(secp256k1_scalar_is_one(&inv));
#ifndef USE_NUM_NONE
secp256k1_scalar_get_num(&invnum, &inv);
CHECK(secp256k1_num_is_one(&invnum));
#endif
}
}
@ -855,7 +967,7 @@ void run_scalar_tests(void) {
secp256k1_scalar zzv;
#endif
int overflow;
unsigned char chal[32][2][32] = {
unsigned char chal[33][2][32] = {
{{0xff, 0xff, 0x03, 0x07, 0x00, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff,
@ -1111,9 +1223,17 @@ void run_scalar_tests(void) {
{0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0x1f, 0x00, 0x00,
0xf8, 0x07, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff,
0xff, 0xc7, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff}}
0xff, 0xc7, 0xff, 0xff, 0xe0, 0xff, 0xff, 0xff}},
{{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb,
0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03},
{0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
0x82, 0xc9, 0xfa, 0xb0, 0x68, 0x04, 0xa0, 0x00,
0xff, 0xff, 0xff, 0xff, 0xff, 0x6f, 0x03, 0xfb,
0xfa, 0x8a, 0x7d, 0xdf, 0x13, 0x86, 0xe2, 0x03}}
};
unsigned char res[32][2][32] = {
unsigned char res[33][2][32] = {
{{0x0c, 0x3b, 0x0a, 0xca, 0x8d, 0x1a, 0x2f, 0xb9,
0x8a, 0x7b, 0x53, 0x5a, 0x1f, 0xc5, 0x22, 0xa1,
0x07, 0x2a, 0x48, 0xea, 0x02, 0xeb, 0xb3, 0xd6,
@ -1369,10 +1489,18 @@ void run_scalar_tests(void) {
{0xe4, 0xf1, 0x23, 0x84, 0xe1, 0xb5, 0x9d, 0xf2,
0xb8, 0x73, 0x8b, 0x45, 0x2b, 0x35, 0x46, 0x38,
0x10, 0x2b, 0x50, 0xf8, 0x8b, 0x35, 0xcd, 0x34,
0xc8, 0x0e, 0xf6, 0xdb, 0x09, 0x35, 0xf0, 0xda}}
0xc8, 0x0e, 0xf6, 0xdb, 0x09, 0x35, 0xf0, 0xda}},
{{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34,
0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13,
0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5},
{0xdb, 0x21, 0x5c, 0x8d, 0x83, 0x1d, 0xb3, 0x34,
0xc7, 0x0e, 0x43, 0xa1, 0x58, 0x79, 0x67, 0x13,
0x1e, 0x86, 0x5d, 0x89, 0x63, 0xe6, 0x0a, 0x46,
0x5c, 0x02, 0x97, 0x1b, 0x62, 0x43, 0x86, 0xf5}}
};
secp256k1_scalar_set_int(&one, 1);
for (i = 0; i < 32; i++) {
for (i = 0; i < 33; i++) {
secp256k1_scalar_set_b32(&x, chal[i][0], &overflow);
CHECK(!overflow);
secp256k1_scalar_set_b32(&y, chal[i][1], &overflow);
@ -1446,7 +1574,7 @@ void random_fe_non_zero(secp256k1_fe *nz) {
void random_fe_non_square(secp256k1_fe *ns) {
secp256k1_fe r;
random_fe_non_zero(ns);
if (secp256k1_fe_sqrt_var(&r, ns)) {
if (secp256k1_fe_sqrt(&r, ns)) {
secp256k1_fe_negate(ns, ns, 1);
}
}
@ -1641,7 +1769,7 @@ void run_sqr(void) {
void test_sqrt(const secp256k1_fe *a, const secp256k1_fe *k) {
secp256k1_fe r1, r2;
int v = secp256k1_fe_sqrt_var(&r1, a);
int v = secp256k1_fe_sqrt(&r1, a);
CHECK((v == 0) == (k == NULL));
if (k != NULL) {
@ -1951,8 +2079,8 @@ void test_add_neg_y_diff_x(void) {
* of the sum to be wrong (since infinity has no xy coordinates).
* HOWEVER, if the x-coordinates are different, infinity is the
* wrong answer, and such degeneracies are exposed. This is the
* root of https://github.com/bitcoin/secp256k1/issues/257 which
* this test is a regression test for.
* root of https://github.com/bitcoin-core/secp256k1/issues/257
* which this test is a regression test for.
*
* These points were generated in sage as
* # secp256k1 params
@ -2051,15 +2179,16 @@ void run_ec_combine(void) {
void test_group_decompress(const secp256k1_fe* x) {
/* The input itself, normalized. */
secp256k1_fe fex = *x;
secp256k1_fe tmp;
secp256k1_fe fez;
/* Results of set_xquad_var, set_xo_var(..., 0), set_xo_var(..., 1). */
secp256k1_ge ge_quad, ge_even, ge_odd;
secp256k1_gej gej_quad;
/* Return values of the above calls. */
int res_quad, res_even, res_odd;
secp256k1_fe_normalize_var(&fex);
res_quad = secp256k1_ge_set_xquad_var(&ge_quad, &fex);
res_quad = secp256k1_ge_set_xquad(&ge_quad, &fex);
res_even = secp256k1_ge_set_xo_var(&ge_even, &fex, 0);
res_odd = secp256k1_ge_set_xo_var(&ge_odd, &fex, 1);
@ -2085,13 +2214,29 @@ void test_group_decompress(const secp256k1_fe* x) {
CHECK(secp256k1_fe_equal_var(&ge_odd.x, x));
/* Check that the Y coordinate result in ge_quad is a square. */
CHECK(secp256k1_fe_sqrt_var(&tmp, &ge_quad.y));
secp256k1_fe_sqr(&tmp, &tmp);
CHECK(secp256k1_fe_equal_var(&tmp, &ge_quad.y));
CHECK(secp256k1_fe_is_quad_var(&ge_quad.y));
/* Check odd/even Y in ge_odd, ge_even. */
CHECK(secp256k1_fe_is_odd(&ge_odd.y));
CHECK(!secp256k1_fe_is_odd(&ge_even.y));
/* Check secp256k1_gej_has_quad_y_var. */
secp256k1_gej_set_ge(&gej_quad, &ge_quad);
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
do {
random_fe_test(&fez);
} while (secp256k1_fe_is_zero(&fez));
secp256k1_gej_rescale(&gej_quad, &fez);
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
secp256k1_gej_neg(&gej_quad, &gej_quad);
CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
do {
random_fe_test(&fez);
} while (secp256k1_fe_is_zero(&fez));
secp256k1_gej_rescale(&gej_quad, &fez);
CHECK(!secp256k1_gej_has_quad_y_var(&gej_quad));
secp256k1_gej_neg(&gej_quad, &gej_quad);
CHECK(secp256k1_gej_has_quad_y_var(&gej_quad));
}
}
@ -2383,9 +2528,7 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
secp256k1_scalar x, shift;
int wnaf[256] = {0};
int i;
#ifdef USE_ENDOMORPHISM
int skew;
#endif
secp256k1_scalar num = *number;
secp256k1_scalar_set_int(&x, 0);
@ -2395,10 +2538,8 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
for (i = 0; i < 16; ++i) {
secp256k1_scalar_shr_int(&num, 8);
}
skew = secp256k1_wnaf_const(wnaf, num, w);
#else
secp256k1_wnaf_const(wnaf, num, w);
#endif
skew = secp256k1_wnaf_const(wnaf, num, w);
for (i = WNAF_SIZE(w); i >= 0; --i) {
secp256k1_scalar t;
@ -2417,10 +2558,8 @@ void test_constant_wnaf(const secp256k1_scalar *number, int w) {
}
secp256k1_scalar_add(&x, &x, &t);
}
#ifdef USE_ENDOMORPHISM
/* Skew num because when encoding 128-bit numbers as odd we use an offset */
/* Skew num because when encoding numbers as odd we use an offset */
secp256k1_scalar_cadd_bit(&num, skew == 2, 1);
#endif
CHECK(secp256k1_scalar_eq(&x, &num));
}
@ -3484,12 +3623,14 @@ void run_ecdsa_end_to_end(void) {
int test_ecdsa_der_parse(const unsigned char *sig, size_t siglen, int certainly_der, int certainly_not_der) {
static const unsigned char zeroes[32] = {0};
#ifdef ENABLE_OPENSSL_TESTS
static const unsigned char max_scalar[32] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x40
};
#endif
int ret = 0;
@ -3607,13 +3748,13 @@ static void assign_big_endian(unsigned char *ptr, size_t ptrlen, uint32_t val) {
static void damage_array(unsigned char *sig, size_t *len) {
int pos;
int action = secp256k1_rand_bits(3);
if (action < 1) {
if (action < 1 && *len > 3) {
/* Delete a byte. */
pos = secp256k1_rand_int(*len);
memmove(sig + pos, sig + pos + 1, *len - pos - 1);
(*len)--;
return;
} else if (action < 2) {
} else if (action < 2 && *len < 2048) {
/* Insert a byte. */
pos = secp256k1_rand_int(1 + *len);
memmove(sig + pos + 1, sig + pos, *len - pos);
@ -3785,6 +3926,7 @@ void run_ecdsa_der_parse(void) {
int certainly_der = 0;
int certainly_not_der = 0;
random_ber_signature(buffer, &buflen, &certainly_der, &certainly_not_der);
CHECK(buflen <= 2048);
for (j = 0; j < 16; j++) {
int ret = 0;
if (j > 0) {