4.5 KiB
id | title |
---|---|
configuration | Application configuration |
Bitcoin-S uses HOCON to configure various parts of the application the library offers. HOCON is a superset of JSON, that is, all valid JSON is valid HOCON.
All configuration for Bitcoin-S is under the bitcoin-s
key.
If you have a file application.conf
anywhere on your classpath when using
bitcoin-s, the values there take precedence over the ones found in our
reference.conf
. We also look for the file bitcoin-s.conf
in the current
Bitcoin-S data directory.
The resolved configuration gets parsed by
AppConfig
.
AppConfig
is an abstract class that's implemented by corresponding case
classes in the wallet
, chain
and node
projects. Here's some examples of how to
construct a wallet configuration:
import org.bitcoins.wallet.config.WalletAppConfig
import com.typesafe.config.ConfigFactory
import java.nio.file.Paths
import scala.util.Properties
// reads $HOME/.bitcoin-s/
val defaultConfig = WalletAppConfig.fromDefaultDatadir()
// reads a custom data directory
val customDirectory = Paths.get(Properties.userHome, "custom-bitcoin-s-directory")
val configFromCustomDatadir = WalletAppConfig(customDirectory)
// reads a custom data directory and overrides the network to be testnet3
val customOverride = ConfigFactory.parseString("bitcoin-s.network = testnet3")
val configFromCustomDirAndOverride = WalletAppConfig(customDirectory, customOverride)
You can pass as many com.typesafe.config.Config
s as you'd like. If any
keys appear multiple times the last one encountered takes precedence.
Internal configuration
Database connections are also configured by using HOCON. This is done in
db.conf
. The options
exposed here are not intended to
be used by users of Bitcoin-S, and are internal only.
Example Configuration File
bitcoin-s {
datadir = ${HOME}/.bitcoin-s
network = regtest # regtest, testnet3, mainnet
logging {
level = WARN # trace, debug, info, warn, error, off
# You can also tune specific module loggers.
# They each take the same levels as above.
# If they are commented out (as they are
# by default), `logging.level` gets used
# instead.
# The available loggers are:
# incoming and outgoing P2P messages
# p2p = info
# verification of block headers, merkle trees
# chain-verification = info
# generation of addresses, signing of TXs
# key-handling = info
# wallet operations not related to key management
# wallet = info
# HTTP RPC server
# http = info
# Database interactions
# database = info
# whether or not to write to the log file
disable-file = false
# whether or not to log to stdout
disable-console = false
}
node {
mode = neutrino # neutrino, spv
peers = [] # a list of peer addresses in form "hostname:portnumber"
# (e.g. "neutrino.testnet3.suredbits.com:18333")
# Port number is optional, the default value is 8333 for mainnet,
# 18333 for testnet and 18444 for regtest.
}
chain {
neutrino {
filter-header-batch-size = 2000
filter-batch-size = 100
}
}
# settings for wallet module
wallet {
defaultAccountType = legacy # legacy, segwit, nested-segwit
bloomFalsePositiveRate = 0.0001 # percentage
addressGapLimit = 20
discoveryBatchSize = 100
}
}
akka {
loglevel = "OFF"
stdout-loglevel = "OFF"
http {
client {
# The time after which an idle connection will be automatically closed.
# Set to `infinite` to completely disable idle connection timeouts.
# some requests potentially take a long time, like generate and prune
idle-timeout = 5 minutes
}
}
actor {
debug {
# enable DEBUG logging of all AutoReceiveMessages (Kill, PoisonPill etc.)
autoreceive= off
# enable function of LoggingReceive, which is to log any received message at
# DEBUG level
receive = on
# enable DEBUG logging of unhandled messages
unhandled = off
# enable DEBUG logging of actor lifecycle changes
lifecycle = off
event-stream=off
}
}
}