* Implement abililty to use BIP39 password. This means this password needs to be password through our various projects to be able to correctly generate the key that controls the wallet. This also renames 'CreateKeyManagerApi' -> 'BIP39CreateKeymanagerApi' as the bip39 password is needed when creating the KeyManager * Add bip39 password to BIP39KeyManager.fromParams(), fix mdocs * Fix bug in unit test were whe weren't specifying password * Fix rebase issues
6.4 KiB
title | id |
---|---|
Wallet | wallet |
Bitcoin-s wallet
Bitcoin-s comes bundled with a rudimentary Bitcoin wallet. This wallet is capable of managing private keys, generating addresses, constructing and signing transactions, among other things. It is BIP32/BIP44/BIP49/BIP84 compatible.
This wallet is currently only released as a library, and not as a binary. This is because it (nor the documentation) is not deemed production ready. Use at your own risk, and without too much money depending on it.
How is the bitcoin-s wallet implemented
The bitcoin-s wallet is a scalable way for individuals up to large bitcoin exchanges to safely and securely store their bitcoin in a scalable way.
All key interactions are delegated to the key-manager which is a minimal dependecy library to store and use key material.
By default, we store the encrypted root key in $HOME/.bitcoin-s/encrypted-bitcoin-s-seed.json
. This is the seed that is used for each of the wallets on each bitcoin network.
The wallet itself is used to manage the utxo life cycle, create transactions, and update wallet balances to show how much money you have the on a bitcoin network.
We use slick as middleware to support different database types. Depending on your use case, you can use something as simple as sqlite, or something much more scalable like postgres.
Example
This guide shows how to create a Bitcoin-s wallet and then
peer it with a bitcoind
instance that relays
information about what is happening on the blockchain
through the P2P network.
This is useful if you want more flexible signing procedures in the JVM ecosystem and more granular control over your UTXOs with popular database like Postgres, SQLite, etc.
This code snippet you have a running bitcoind
instance, locally
on regtest.
implicit val ec = scala.concurrent.ExecutionContext.global
import com.typesafe.config.ConfigFactory
val config = ConfigFactory.parseString {
"""
| bitcoin-s {
| network = regtest
| }
""".stripMargin
}
import java.nio.file.Files
val datadir = Files.createTempDirectory("bitcoin-s-wallet")
import org.bitcoins.wallet.config.WalletAppConfig
implicit val walletConfig = WalletAppConfig(datadir, config)
// we also need to store chain state for syncing purposes
import org.bitcoins.chain.config.ChainAppConfig
implicit val chainConfig = ChainAppConfig(datadir, config)
// when this future completes, we have
// created the necessary directories and
// databases for managing both chain state
// and wallet state
import scala.concurrent._
val configF: Future[Unit] = for {
_ <- walletConfig.initialize()
_ <- chainConfig.initialize()
} yield ()
import org.bitcoins.rpc.config.BitcoindInstance
val bitcoindInstance = BitcoindInstance.fromDatadir()
import org.bitcoins.rpc.client.common.BitcoindRpcClient
val bitcoind = BitcoindRpcClient(bitcoindInstance)
// when this future completes, we have
// synced our chain handler to our bitcoind
// peer
import org.bitcoins.chain.api.ChainApi
val syncF: Future[ChainApi] = configF.flatMap { _ =>
val getBestBlockHashFunc = { () =>
bitcoind.getBestBlockHash
}
import org.bitcoins.core.crypto.DoubleSha256DigestBE
val getBlockHeaderFunc = { hash: DoubleSha256DigestBE =>
bitcoind.getBlockHeader(hash).map(_.blockHeader)
}
import org.bitcoins.chain.models._
import org.bitcoins.chain.blockchain.ChainHandler
val blockHeaderDAO = BlockHeaderDAO()
val compactFilterHeaderDAO = CompactFilterHeaderDAO()
val compactFilterDAO = CompactFilterDAO()
val chainHandler = ChainHandler(
blockHeaderDAO,
compactFilterHeaderDAO,
compactFilterDAO,
blockchains = Vector.empty,
blockFilterCheckpoints = Map.empty)
import org.bitcoins.chain.blockchain.sync.ChainSync
ChainSync.sync(chainHandler, getBlockHeaderFunc, getBestBlockHashFunc)
}
//initialize our key manager, where we store our keys
import org.bitcoins.keymanager.bip39._
//you can add a password here if you want
//val bip39PasswordOpt = Some("my-password-here")
val bip39PasswordOpt = None
val keyManager = BIP39KeyManager.initialize(walletConfig.kmParams, bip39PasswordOpt).getOrElse {
throw new RuntimeException(s"Failed to initalize key manager")
}
// once this future completes, we have a initialized
// wallet
import org.bitcoins.wallet.api.LockedWalletApi
import org.bitcoins.wallet.Wallet
import org.bitcoins.core.api._
import org.bitcoins.core.crypto._
import org.bitcoins.core.protocol._
val wallet = Wallet(keyManager, new NodeApi {
override def downloadBlocks(blockHashes: Vector[DoubleSha256Digest]): Future[Unit] = Future.successful(())
}, new ChainQueryApi {
import org.bitcoins.core.api.ChainQueryApi._
override def getBlockHeight(blockHash: DoubleSha256DigestBE): Future[Option[Int]] = Future.successful(None)
override def getBestBlockHash(): Future[DoubleSha256DigestBE] = Future.successful(DoubleSha256DigestBE.empty)
override def getNumberOfConfirmations(blockHashOpt: DoubleSha256DigestBE): Future[Option[Int]] = Future.successful(None)
override def getFilterCount: Future[Int] = Future.successful(0)
override def getHeightByBlockStamp(blockStamp: BlockStamp): Future[Int] = Future.successful(0)
override def getFiltersBetweenHeights(startHeight: Int, endHeight: Int): Future[Vector[FilterResponse]] = Future.successful(Vector.empty)
})
val walletF: Future[LockedWalletApi] = configF.flatMap { _ =>
Wallet.initialize(wallet,bip39PasswordOpt)
}
// when this future completes, ww have sent a transaction
// from bitcoind to the Bitcoin-S wallet
import org.bitcoins.core.crypto._
import org.bitcoins.core.protocol.transaction._
import org.bitcoins.core.currency._
val transactionF: Future[(Transaction, Option[DoubleSha256DigestBE])] = for {
wallet <- walletF
address <- wallet.getNewAddress()
txid <- bitcoind.sendToAddress(address, 3.bitcoin)
transaction <- bitcoind.getRawTransaction(txid)
} yield (transaction.hex, transaction.blockhash)
// when this future completes, we have processed
// the transaction from bitcoind, and we have
// queried our balance for the current balance
val balanceF: Future[CurrencyUnit] = for {
wallet <- walletF
(tx, blockhash) <- transactionF
_ <- wallet.processTransaction(tx, blockhash)
balance <- wallet.getBalance
} yield balance
balanceF.foreach { balance =>
println(s"Bitcoin-S wallet balance: $balance")
}