1
0
mirror of https://github.com/bitcoin/bips.git synced 2024-11-19 01:40:05 +01:00
bitcoin-bips/bip-0340/test-vectors.py

301 lines
12 KiB
Python
Raw Normal View History

import sys
from reference import *
def is_square(x):
return int(pow(x, (p - 1) // 2, p)) == 1
def has_square_y(P):
"""Determine if P has a square Y coordinate. Used in an earlier draft of BIP340."""
assert not is_infinite(P)
return is_square(P[1])
def vector0():
seckey = bytes_from_int(3)
msg = bytes_from_int(0)
aux_rand = bytes_from_int(0)
sig = schnorr_sign(msg, seckey, aux_rand)
pubkey = pubkey_gen(seckey)
# We should have at least one test vector where the seckey needs to be
# negated and one where it doesn't. In this one the seckey doesn't need to
# be negated.
x = int_from_bytes(seckey)
P = point_mul(G, x)
assert(y(P) % 2 == 0)
2020-03-12 18:23:07 +01:00
# For historical reasons (pubkey tiebreaker was squareness and not evenness)
2024-06-10 03:56:51 +02:00
# we should have at least one test vector where the point reconstructed
# from the public key has a square and one where it has a non-square Y
# coordinate. In this one Y is non-square.
pubkey_point = lift_x(pubkey)
assert(not has_square_y(pubkey_point))
# For historical reasons (R tiebreaker was squareness and not evenness)
2024-06-10 03:56:51 +02:00
# we should have at least one test vector where the point reconstructed
# from the R.x coordinate has a square and one where it has a non-square Y
# coordinate. In this one Y is non-square.
R = lift_x(sig[0:32])
assert(not has_square_y(R))
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector1():
seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
aux_rand = bytes_from_int(1)
sig = schnorr_sign(msg, seckey, aux_rand)
# The point reconstructed from the R.x coordinate has a square Y coordinate.
R = lift_x(sig[0:32])
assert(has_square_y(R))
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", None)
def vector2():
seckey = bytes_from_int(0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9)
msg = bytes_from_int(0x7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
sig = schnorr_sign(msg, seckey, aux_rand)
# The point reconstructed from the public key has a square Y coordinate.
pubkey = pubkey_gen(seckey)
pubkey_point = lift_x(pubkey)
assert(has_square_y(pubkey_point))
# This signature vector would not verify if the implementer checked the
# evenness of the X coordinate of R instead of the Y coordinate.
R = lift_x(sig[0:32])
assert(R[0] % 2 == 1)
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector3():
seckey = bytes_from_int(0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710)
# Need to negate this seckey before signing
x = int_from_bytes(seckey)
P = point_mul(G, x)
assert(y(P) % 2 != 0)
msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
aux_rand = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
sig = schnorr_sign(msg, seckey, aux_rand)
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
# Signs with a given nonce. This can be INSECURE and is only INTENDED FOR
# GENERATING TEST VECTORS. Results in an invalid signature if y(kG) is not
# even.
def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
seckey0 = int_from_bytes(seckey0)
if not (1 <= seckey0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if has_even_y(P) else n - seckey0
R = point_mul(G, k)
e = int_from_bytes(tagged_hash("BIP0340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
2024-05-28 19:25:46 +02:00
# Creates a signature with a small x(R) by using k = -1/2
def vector4():
one_half = n - 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
seckey = bytes_from_int(0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB)
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, one_half)
return (None, pubkey_gen(seckey), None, msg, sig, "TRUE", None)
default_seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
default_aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
# Public key is not on the curve
def vector5():
# This creates a dummy signature that doesn't have anything to do with the
# public key.
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
assert(lift_x(pubkey) is None)
return (None, pubkey, None, msg, sig, "FALSE", "public key not on the curve")
def vector6():
seckey = default_seckey
msg = default_msg
k = 6
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
# Y coordinate of R is not even
R = point_mul(G, k)
assert(not has_even_y(R))
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_even_y(R) is false")
def vector7():
seckey = default_seckey
msg = int_from_bytes(default_msg)
neg_msg = bytes_from_int(n - msg)
sig = schnorr_sign(neg_msg, seckey, default_aux_rand)
return (None, pubkey_gen(seckey), None, bytes_from_int(msg), sig, "FALSE", "negated message")
def vector8():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "negated s value")
def bytes_from_point_inf0(P):
if P == None:
return bytes_from_int(0)
return bytes_from_int(P[0])
def vector9():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf0.__code__
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 0")
def bytes_from_point_inf1(P):
if P == None:
return bytes_from_int(1)
return bytes_from_int(P[0])
def vector10():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf1.__code__
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_even_y(inf) is defined as true and x(inf) as 1")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
# coordinate on the curve. This test vector just increases test coverage.
def vector11():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
assert(lift_x(x_not_on_curve) is None)
sig = x_not_on_curve + sig[32:64]
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
# than the field size. This test vector just increases test coverage.
def vector12():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace R's X coordinate with an X coordinate that's equal to field size
sig = bytes_from_int(p) + sig[32:64]
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is equal to field size")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
# than the curve order. This test vector just increases test coverage.
def vector13():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace s with a number that's equal to the curve order
sig = sig[0:32] + bytes_from_int(n)
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[32:64] is equal to curve order")
# Test out of range pubkey
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which accepts out of range pubkeys because we can't find
# a secret key for such a public key and therefore can not create a signature.
# This test vector just increases test coverage.
def vector14():
# This creates a dummy signature that doesn't have anything to do with the
# public key.
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey_int = p + 1
pubkey = bytes_from_int(pubkey_int)
assert(lift_x(pubkey) is None)
# If an implementation would reduce a given public key modulo p then the
# pubkey would be valid
assert(lift_x(bytes_from_int(pubkey_int % p)) is not None)
return (None, pubkey, None, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")
2022-07-27 14:39:13 +02:00
def varlen_vector(msg_int):
seckey = bytes_from_int(int(16 * "0340", 16))
pubkey = pubkey_gen(seckey)
aux_rand = bytes_from_int(0)
msg = msg_int.to_bytes((msg_int.bit_length() + 7) // 8, "big")
sig = schnorr_sign(msg, seckey, aux_rand)
comment = "message of size %d (added 2022-12)"
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", comment % len(msg))
vector15 = lambda : varlen_vector(0)
vector16 = lambda : varlen_vector(0x11)
vector17 = lambda : varlen_vector(0x0102030405060708090A0B0C0D0E0F1011)
vector18 = lambda : varlen_vector(int(100 * "99", 16))
vectors = [
vector0(),
vector1(),
vector2(),
vector3(),
vector4(),
vector5(),
vector6(),
vector7(),
vector8(),
vector9(),
vector10(),
vector11(),
vector12(),
vector13(),
2022-07-27 14:39:13 +02:00
vector14(),
vector15(),
vector16(),
vector17(),
vector18(),
]
# Converts the byte strings of a test vector into hex strings
def bytes_to_hex(seckey, pubkey, aux_rand, msg, sig, result, comment):
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), aux_rand.hex().upper() if aux_rand is not None else None, msg.hex().upper(), sig.hex().upper(), result, comment)
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5], vector[6]), vectors))
def print_csv(vectors):
writer = csv.writer(sys.stdout)
writer.writerow(("index", "secret key", "public key", "aux_rand", "message", "signature", "verification result", "comment"))
for (i,v) in enumerate(vectors):
writer.writerow((i,)+v)
print_csv(vectors)