2019-07-06 18:32:41 +02:00
import sys
from reference import *
def vector0 ( ) :
2019-11-01 15:44:02 +01:00
seckey = bytes_from_int ( 1 )
2019-07-06 18:32:41 +02:00
msg = bytes_from_int ( 0 )
sig = schnorr_sign ( msg , seckey )
pubkey = pubkey_gen ( seckey )
# The point reconstructed from the public key has an even Y coordinate.
pubkey_point = point_from_bytes ( pubkey )
assert ( pubkey_point [ 1 ] & 1 == 0 )
2019-11-01 15:44:02 +01:00
return ( seckey , pubkey , msg , sig , " TRUE " , None )
2019-07-06 18:32:41 +02:00
def vector1 ( ) :
2019-11-01 15:44:02 +01:00
seckey = bytes_from_int ( 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF )
2019-07-06 18:32:41 +02:00
msg = bytes_from_int ( 0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 )
sig = schnorr_sign ( msg , seckey )
pubkey = pubkey_gen ( seckey )
# The point reconstructed from the public key has an odd Y coordinate.
pubkey_point = point_from_bytes ( pubkey )
assert ( pubkey_point [ 1 ] & 1 == 1 )
2019-11-01 15:44:02 +01:00
return ( seckey , pubkey , msg , sig , " TRUE " , None )
2019-07-06 18:32:41 +02:00
def vector2 ( ) :
2019-11-01 15:44:02 +01:00
seckey = bytes_from_int ( 0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9 )
2019-07-06 18:32:41 +02:00
msg = bytes_from_int ( 0x5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C )
sig = schnorr_sign ( msg , seckey )
2019-11-04 20:56:48 +01:00
# This signature vector would not verify if the implementer checked the
# squareness of the X coordinate of R instead of the Y coordinate.
2019-07-06 18:32:41 +02:00
R = point_from_bytes ( sig [ 0 : 32 ] )
2019-11-04 20:56:48 +01:00
assert ( not is_square ( R [ 0 ] ) )
2019-07-06 18:32:41 +02:00
2019-11-01 15:44:02 +01:00
return ( seckey , pubkey_gen ( seckey ) , msg , sig , " TRUE " , None )
2019-07-06 18:32:41 +02:00
def vector3 ( ) :
2019-11-01 15:44:02 +01:00
seckey = bytes_from_int ( 0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710 )
2019-07-06 18:32:41 +02:00
msg = bytes_from_int ( 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF )
sig = schnorr_sign ( msg , seckey )
2019-11-01 15:44:02 +01:00
return ( seckey , pubkey_gen ( seckey ) , msg , sig , " TRUE " , " test fails if msg is reduced modulo p or n " )
2019-07-06 18:32:41 +02:00
2019-11-04 20:56:48 +01:00
# Signs with a given nonce. Results in an invalid signature if y(kG) is not a square
2019-07-06 18:32:41 +02:00
def schnorr_sign_fixed_nonce ( msg , seckey0 , k ) :
if len ( msg ) != 32 :
raise ValueError ( ' The message must be a 32-byte array. ' )
2019-11-01 15:44:02 +01:00
seckey0 = int_from_bytes ( seckey0 )
2019-07-06 18:32:41 +02:00
if not ( 1 < = seckey0 < = n - 1 ) :
raise ValueError ( ' The secret key must be an integer in the range 1..n-1. ' )
P = point_mul ( G , seckey0 )
2019-11-04 20:56:48 +01:00
seckey = seckey0 if has_square_y ( P ) else n - seckey0
2019-07-06 18:32:41 +02:00
R = point_mul ( G , k )
2019-08-26 22:46:08 +02:00
e = int_from_bytes ( tagged_hash ( " BIPSchnorr " , bytes_from_point ( R ) + bytes_from_point ( P ) + msg ) ) % n
2019-07-06 18:32:41 +02:00
return bytes_from_point ( R ) + bytes_from_int ( ( k + e * seckey ) % n )
# Creates a singature with a small x(R) by using k = 1/2
def vector4 ( ) :
one_half = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
2019-11-01 15:44:02 +01:00
seckey = bytes_from_int ( 0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB )
2019-07-06 18:32:41 +02:00
msg = bytes_from_int ( 0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703 )
sig = schnorr_sign_fixed_nonce ( msg , seckey , one_half )
return ( None , pubkey_gen ( seckey ) , msg , sig , " TRUE " , None )
2019-11-01 15:44:02 +01:00
default_seckey = bytes_from_int ( 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF )
2019-07-06 18:32:41 +02:00
default_msg = bytes_from_int ( 0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89 )
def vector5 ( ) :
seckey = default_seckey
msg = default_msg
sig = schnorr_sign ( msg , seckey )
# Public key is not on the curve
pubkey = bytes_from_int ( 0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34 )
assert ( point_from_bytes ( pubkey ) is None )
return ( None , pubkey , msg , sig , " FALSE " , " public key not on the curve " )
def vector6 ( ) :
seckey = default_seckey
msg = default_msg
k = 3
sig = schnorr_sign_fixed_nonce ( msg , seckey , k )
2019-11-04 20:56:48 +01:00
# Y coordinate of R is not a square
2019-07-06 18:32:41 +02:00
R = point_mul ( G , k )
2019-11-04 20:56:48 +01:00
assert ( not has_square_y ( R ) )
2019-07-06 18:32:41 +02:00
2019-11-01 15:50:26 +01:00
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " has_square_y(R) is false " )
2019-07-06 18:32:41 +02:00
def vector7 ( ) :
seckey = default_seckey
msg = int_from_bytes ( default_msg )
neg_msg = bytes_from_int ( n - msg )
sig = schnorr_sign ( neg_msg , seckey )
return ( None , pubkey_gen ( seckey ) , bytes_from_int ( msg ) , sig , " FALSE " , " negated message " )
def vector8 ( ) :
seckey = default_seckey
msg = default_msg
sig = schnorr_sign ( msg , seckey )
sig = sig [ 0 : 32 ] + bytes_from_int ( n - int_from_bytes ( sig [ 32 : 64 ] ) )
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " negated s value " )
def bytes_from_point_inf0 ( P ) :
if P == None :
return bytes_from_int ( 0 )
return bytes_from_int ( P [ 0 ] )
def vector9 ( ) :
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point . __code__
bytes_from_point . __code__ = bytes_from_point_inf0 . __code__
sig = schnorr_sign_fixed_nonce ( msg , seckey , k )
bytes_from_point . __code__ = bytes_from_point_tmp
2019-11-04 20:56:48 +01:00
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0 " )
2019-07-06 18:32:41 +02:00
def bytes_from_point_inf1 ( P ) :
if P == None :
return bytes_from_int ( 1 )
return bytes_from_int ( P [ 0 ] )
def vector10 ( ) :
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point . __code__
bytes_from_point . __code__ = bytes_from_point_inf1 . __code__
sig = schnorr_sign_fixed_nonce ( msg , seckey , k )
bytes_from_point . __code__ = bytes_from_point_tmp
2019-11-04 20:56:48 +01:00
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1 " )
2019-07-06 18:32:41 +02:00
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
# coordinate on the curve. This test vector just increases test coverage.
def vector11 ( ) :
seckey = default_seckey
msg = default_msg
sig = schnorr_sign ( msg , seckey )
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int ( 0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D )
assert ( point_from_bytes ( x_not_on_curve ) is None )
sig = x_not_on_curve + sig [ 32 : 64 ]
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " sig[0:32] is not an X coordinate on the curve " )
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
# than the field size. This test vector just increases test coverage.
def vector12 ( ) :
seckey = default_seckey
msg = default_msg
sig = schnorr_sign ( msg , seckey )
# Replace R's X coordinate with an X coordinate that's equal to field size
sig = bytes_from_int ( p ) + sig [ 32 : 64 ]
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " sig[0:32] is equal to field size " )
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
# than the curve order. This test vector just increases test coverage.
def vector13 ( ) :
seckey = default_seckey
msg = default_msg
sig = schnorr_sign ( msg , seckey )
# Replace s with a number that's equal to the curve order
sig = sig [ 0 : 32 ] + bytes_from_int ( n )
return ( None , pubkey_gen ( seckey ) , msg , sig , " FALSE " , " sig[32:64] is equal to curve order " )
vectors = [
vector0 ( ) ,
vector1 ( ) ,
vector2 ( ) ,
vector3 ( ) ,
vector4 ( ) ,
vector5 ( ) ,
vector6 ( ) ,
vector7 ( ) ,
vector8 ( ) ,
vector9 ( ) ,
vector10 ( ) ,
vector11 ( ) ,
vector12 ( ) ,
vector13 ( ) ,
]
# Converts the byte strings of a test vector into hex strings
def bytes_to_hex ( seckey , pubkey , msg , sig , result , comment ) :
return ( seckey . hex ( ) . upper ( ) if seckey is not None else None , pubkey . hex ( ) . upper ( ) , msg . hex ( ) . upper ( ) , sig . hex ( ) . upper ( ) , result , comment )
vectors = list ( map ( lambda vector : bytes_to_hex ( vector [ 0 ] , vector [ 1 ] , vector [ 2 ] , vector [ 3 ] , vector [ 4 ] , vector [ 5 ] ) , vectors ) )
def print_csv ( vectors ) :
writer = csv . writer ( sys . stdout )
writer . writerow ( ( " index " , " secret key " , " public key " , " message " , " signature " , " verification result " , " comment " ) )
for ( i , v ) in enumerate ( vectors ) :
writer . writerow ( ( i , ) + v )
print_csv ( vectors )