mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2025-02-27 07:59:35 +01:00
This should make us conflict less with system files named "log.h". Yes, we shouldn't have been conflicting with those anyway, but some people's compilers act very oddly. The actual change was done with one "git mv", by editing Makefile.am, and running find . -name '*.[ch]' | xargs perl -i -pe 'if (/^#include.*\Wlog.h/) {s/log.h/torlog.h/; }'
634 lines
20 KiB
C
634 lines
20 KiB
C
/* Copyright (c) 2007-2010, The Tor Project, Inc. */
|
|
/* See LICENSE for licensing information */
|
|
#if 1
|
|
/* Tor dependencies */
|
|
#include "orconfig.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "torint.h"
|
|
#define MEMPOOL_PRIVATE
|
|
#include "mempool.h"
|
|
|
|
/* OVERVIEW:
|
|
*
|
|
* This is an implementation of memory pools for Tor cells. It may be
|
|
* useful for you too.
|
|
*
|
|
* Generally, a memory pool is an allocation strategy optimized for large
|
|
* numbers of identically-sized objects. Rather than the elaborate arena
|
|
* and coalescing strategies you need to get good performance for a
|
|
* general-purpose malloc(), pools use a series of large memory "chunks",
|
|
* each of which is carved into a bunch of smaller "items" or
|
|
* "allocations".
|
|
*
|
|
* To get decent performance, you need to:
|
|
* - Minimize the number of times you hit the underlying allocator.
|
|
* - Try to keep accesses as local in memory as possible.
|
|
* - Try to keep the common case fast.
|
|
*
|
|
* Our implementation uses three lists of chunks per pool. Each chunk can
|
|
* be either "full" (no more room for items); "empty" (no items); or
|
|
* "used" (not full, not empty). There are independent doubly-linked
|
|
* lists for each state.
|
|
*
|
|
* CREDIT:
|
|
*
|
|
* I wrote this after looking at 3 or 4 other pooling allocators, but
|
|
* without copying. The strategy this most resembles (which is funny,
|
|
* since that's the one I looked at longest ago) is the pool allocator
|
|
* underlying Python's obmalloc code. Major differences from obmalloc's
|
|
* pools are:
|
|
* - We don't even try to be threadsafe.
|
|
* - We only handle objects of one size.
|
|
* - Our list of empty chunks is doubly-linked, not singly-linked.
|
|
* (This could change pretty easily; it's only doubly-linked for
|
|
* consistency.)
|
|
* - We keep a list of full chunks (so we can have a "nuke everything"
|
|
* function). Obmalloc's pools leave full chunks to float unanchored.
|
|
*
|
|
* LIMITATIONS:
|
|
* - Not even slightly threadsafe.
|
|
* - Likes to have lots of items per chunks.
|
|
* - One pointer overhead per allocated thing. (The alternative is
|
|
* something like glib's use of an RB-tree to keep track of what
|
|
* chunk any given piece of memory is in.)
|
|
* - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE
|
|
* if you need doubles.
|
|
* - Could probably be optimized a bit; the representation contains
|
|
* a bit more info than it really needs to have.
|
|
*/
|
|
|
|
#if 1
|
|
/* Tor dependencies */
|
|
#include "orconfig.h"
|
|
#include "util.h"
|
|
#include "compat.h"
|
|
#include "torlog.h"
|
|
#define ALLOC(x) tor_malloc(x)
|
|
#define FREE(x) tor_free(x)
|
|
#define ASSERT(x) tor_assert(x)
|
|
#undef ALLOC_CAN_RETURN_NULL
|
|
#define TOR
|
|
//#define ALLOC_ROUNDUP(p) tor_malloc_roundup(p)
|
|
/* End Tor dependencies */
|
|
#else
|
|
/* If you're not building this as part of Tor, you'll want to define the
|
|
* following macros. For now, these should do as defaults.
|
|
*/
|
|
#include <assert.h>
|
|
#define PREDICT_UNLIKELY(x) (x)
|
|
#define PREDICT_LIKELY(x) (x)
|
|
#define ALLOC(x) malloc(x)
|
|
#define FREE(x) free(x)
|
|
#define STRUCT_OFFSET(tp, member) \
|
|
((off_t) (((char*)&((tp*)0)->member)-(char*)0))
|
|
#define ASSERT(x) assert(x)
|
|
#define ALLOC_CAN_RETURN_NULL
|
|
#endif
|
|
|
|
/* Tuning parameters */
|
|
/** Largest type that we need to ensure returned memory items are aligned to.
|
|
* Change this to "double" if we need to be safe for structs with doubles. */
|
|
#define ALIGNMENT_TYPE void *
|
|
/** Increment that we need to align allocated. */
|
|
#define ALIGNMENT sizeof(ALIGNMENT_TYPE)
|
|
/** Largest memory chunk that we should allocate. */
|
|
#define MAX_CHUNK (8*(1L<<20))
|
|
/** Smallest memory chunk size that we should allocate. */
|
|
#define MIN_CHUNK 4096
|
|
|
|
typedef struct mp_allocated_t mp_allocated_t;
|
|
typedef struct mp_chunk_t mp_chunk_t;
|
|
|
|
/** Holds a single allocated item, allocated as part of a chunk. */
|
|
struct mp_allocated_t {
|
|
/** The chunk that this item is allocated in. This adds overhead to each
|
|
* allocated item, thus making this implementation inappropriate for
|
|
* very small items. */
|
|
mp_chunk_t *in_chunk;
|
|
union {
|
|
/** If this item is free, the next item on the free list. */
|
|
mp_allocated_t *next_free;
|
|
/** If this item is not free, the actual memory contents of this item.
|
|
* (Not actual size.) */
|
|
char mem[1];
|
|
/** An extra element to the union to insure correct alignment. */
|
|
ALIGNMENT_TYPE _dummy;
|
|
} u;
|
|
};
|
|
|
|
/** 'Magic' value used to detect memory corruption. */
|
|
#define MP_CHUNK_MAGIC 0x09870123
|
|
|
|
/** A chunk of memory. Chunks come from malloc; we use them */
|
|
struct mp_chunk_t {
|
|
unsigned long magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
|
|
mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
|
|
mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
|
|
mp_pool_t *pool; /**< The pool that this chunk is part of. */
|
|
/** First free item in the freelist for this chunk. Note that this may be
|
|
* NULL even if this chunk is not at capacity: if so, the free memory at
|
|
* next_mem has not yet been carved into items.
|
|
*/
|
|
mp_allocated_t *first_free;
|
|
int n_allocated; /**< Number of currently allocated items in this chunk. */
|
|
int capacity; /**< Number of items that can be fit into this chunk. */
|
|
size_t mem_size; /**< Number of usable bytes in mem. */
|
|
char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
|
|
char mem[1]; /**< Storage for this chunk. (Not actual size.) */
|
|
};
|
|
|
|
/** Number of extra bytes needed beyond mem_size to allocate a chunk. */
|
|
#define CHUNK_OVERHEAD STRUCT_OFFSET(mp_chunk_t, mem[0])
|
|
|
|
/** Given a pointer to a mp_allocated_t, return a pointer to the memory
|
|
* item it holds. */
|
|
#define A2M(a) (&(a)->u.mem)
|
|
/** Given a pointer to a memory_item_t, return a pointer to its enclosing
|
|
* mp_allocated_t. */
|
|
#define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, u.mem) )
|
|
|
|
#ifdef ALLOC_CAN_RETURN_NULL
|
|
/** If our ALLOC() macro can return NULL, check whether <b>x</b> is NULL,
|
|
* and if so, return NULL. */
|
|
#define CHECK_ALLOC(x) \
|
|
if (PREDICT_UNLIKELY(!x)) { return NULL; }
|
|
#else
|
|
/** If our ALLOC() macro can't return NULL, do nothing. */
|
|
#define CHECK_ALLOC(x)
|
|
#endif
|
|
|
|
/** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
|
|
* link the chunk into any list. */
|
|
static mp_chunk_t *
|
|
mp_chunk_new(mp_pool_t *pool)
|
|
{
|
|
size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
|
|
#ifdef ALLOC_ROUNDUP
|
|
size_t alloc_size = CHUNK_OVERHEAD + sz;
|
|
mp_chunk_t *chunk = ALLOC_ROUNDUP(&alloc_size);
|
|
#else
|
|
mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
|
|
#endif
|
|
#ifdef MEMPOOL_STATS
|
|
++pool->total_chunks_allocated;
|
|
#endif
|
|
CHECK_ALLOC(chunk);
|
|
memset(chunk, 0, sizeof(mp_chunk_t)); /* Doesn't clear the whole thing. */
|
|
chunk->magic = MP_CHUNK_MAGIC;
|
|
#ifdef ALLOC_ROUNDUP
|
|
chunk->mem_size = alloc_size - CHUNK_OVERHEAD;
|
|
chunk->capacity = chunk->mem_size / pool->item_alloc_size;
|
|
#else
|
|
chunk->capacity = pool->new_chunk_capacity;
|
|
chunk->mem_size = sz;
|
|
#endif
|
|
chunk->next_mem = chunk->mem;
|
|
chunk->pool = pool;
|
|
return chunk;
|
|
}
|
|
|
|
/** Take a <b>chunk</b> that has just been allocated or removed from
|
|
* <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
|
|
* list. */
|
|
static INLINE void
|
|
add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
|
|
{
|
|
chunk->next = pool->used_chunks;
|
|
if (chunk->next)
|
|
chunk->next->prev = chunk;
|
|
pool->used_chunks = chunk;
|
|
ASSERT(!chunk->prev);
|
|
}
|
|
|
|
/** Return a newly allocated item from <b>pool</b>. */
|
|
void *
|
|
mp_pool_get(mp_pool_t *pool)
|
|
{
|
|
mp_chunk_t *chunk;
|
|
mp_allocated_t *allocated;
|
|
|
|
if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
|
|
/* Common case: there is some chunk that is neither full nor empty. Use
|
|
* that one. (We can't use the full ones, obviously, and we should fill
|
|
* up the used ones before we start on any empty ones. */
|
|
chunk = pool->used_chunks;
|
|
|
|
} else if (pool->empty_chunks) {
|
|
/* We have no used chunks, but we have an empty chunk that we haven't
|
|
* freed yet: use that. (We pull from the front of the list, which should
|
|
* get us the most recently emptied chunk.) */
|
|
chunk = pool->empty_chunks;
|
|
|
|
/* Remove the chunk from the empty list. */
|
|
pool->empty_chunks = chunk->next;
|
|
if (chunk->next)
|
|
chunk->next->prev = NULL;
|
|
|
|
/* Put the chunk on the 'used' list*/
|
|
add_newly_used_chunk_to_used_list(pool, chunk);
|
|
|
|
ASSERT(!chunk->prev);
|
|
--pool->n_empty_chunks;
|
|
if (pool->n_empty_chunks < pool->min_empty_chunks)
|
|
pool->min_empty_chunks = pool->n_empty_chunks;
|
|
} else {
|
|
/* We have no used or empty chunks: allocate a new chunk. */
|
|
chunk = mp_chunk_new(pool);
|
|
CHECK_ALLOC(chunk);
|
|
|
|
/* Add the new chunk to the used list. */
|
|
add_newly_used_chunk_to_used_list(pool, chunk);
|
|
}
|
|
|
|
ASSERT(chunk->n_allocated < chunk->capacity);
|
|
|
|
if (chunk->first_free) {
|
|
/* If there's anything on the chunk's freelist, unlink it and use it. */
|
|
allocated = chunk->first_free;
|
|
chunk->first_free = allocated->u.next_free;
|
|
allocated->u.next_free = NULL; /* For debugging; not really needed. */
|
|
ASSERT(allocated->in_chunk == chunk);
|
|
} else {
|
|
/* Otherwise, the chunk had better have some free space left on it. */
|
|
ASSERT(chunk->next_mem + pool->item_alloc_size <=
|
|
chunk->mem + chunk->mem_size);
|
|
|
|
/* Good, it did. Let's carve off a bit of that free space, and use
|
|
* that. */
|
|
allocated = (void*)chunk->next_mem;
|
|
chunk->next_mem += pool->item_alloc_size;
|
|
allocated->in_chunk = chunk;
|
|
allocated->u.next_free = NULL; /* For debugging; not really needed. */
|
|
}
|
|
|
|
++chunk->n_allocated;
|
|
#ifdef MEMPOOL_STATS
|
|
++pool->total_items_allocated;
|
|
#endif
|
|
|
|
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
|
|
/* This chunk just became full. */
|
|
ASSERT(chunk == pool->used_chunks);
|
|
ASSERT(chunk->prev == NULL);
|
|
|
|
/* Take it off the used list. */
|
|
pool->used_chunks = chunk->next;
|
|
if (chunk->next)
|
|
chunk->next->prev = NULL;
|
|
|
|
/* Put it on the full list. */
|
|
chunk->next = pool->full_chunks;
|
|
if (chunk->next)
|
|
chunk->next->prev = chunk;
|
|
pool->full_chunks = chunk;
|
|
}
|
|
/* And return the memory portion of the mp_allocated_t. */
|
|
return A2M(allocated);
|
|
}
|
|
|
|
/** Return an allocated memory item to its memory pool. */
|
|
void
|
|
mp_pool_release(void *item)
|
|
{
|
|
mp_allocated_t *allocated = (void*) M2A(item);
|
|
mp_chunk_t *chunk = allocated->in_chunk;
|
|
|
|
ASSERT(chunk);
|
|
ASSERT(chunk->magic == MP_CHUNK_MAGIC);
|
|
ASSERT(chunk->n_allocated > 0);
|
|
|
|
allocated->u.next_free = chunk->first_free;
|
|
chunk->first_free = allocated;
|
|
|
|
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
|
|
/* This chunk was full and is about to be used. */
|
|
mp_pool_t *pool = chunk->pool;
|
|
/* unlink from the full list */
|
|
if (chunk->prev)
|
|
chunk->prev->next = chunk->next;
|
|
if (chunk->next)
|
|
chunk->next->prev = chunk->prev;
|
|
if (chunk == pool->full_chunks)
|
|
pool->full_chunks = chunk->next;
|
|
|
|
/* link to the used list. */
|
|
chunk->next = pool->used_chunks;
|
|
chunk->prev = NULL;
|
|
if (chunk->next)
|
|
chunk->next->prev = chunk;
|
|
pool->used_chunks = chunk;
|
|
} else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
|
|
/* This was used and is about to be empty. */
|
|
mp_pool_t *pool = chunk->pool;
|
|
|
|
/* Unlink from the used list */
|
|
if (chunk->prev)
|
|
chunk->prev->next = chunk->next;
|
|
if (chunk->next)
|
|
chunk->next->prev = chunk->prev;
|
|
if (chunk == pool->used_chunks)
|
|
pool->used_chunks = chunk->next;
|
|
|
|
/* Link to the empty list */
|
|
chunk->next = pool->empty_chunks;
|
|
chunk->prev = NULL;
|
|
if (chunk->next)
|
|
chunk->next->prev = chunk;
|
|
pool->empty_chunks = chunk;
|
|
|
|
/* Reset the guts of this chunk to defragment it, in case it gets
|
|
* used again. */
|
|
chunk->first_free = NULL;
|
|
chunk->next_mem = chunk->mem;
|
|
|
|
++pool->n_empty_chunks;
|
|
}
|
|
--chunk->n_allocated;
|
|
}
|
|
|
|
/** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
|
|
* try to fit about <b>chunk_capacity</b> bytes in each chunk. */
|
|
mp_pool_t *
|
|
mp_pool_new(size_t item_size, size_t chunk_capacity)
|
|
{
|
|
mp_pool_t *pool;
|
|
size_t alloc_size, new_chunk_cap;
|
|
|
|
pool = ALLOC(sizeof(mp_pool_t));
|
|
CHECK_ALLOC(pool);
|
|
memset(pool, 0, sizeof(mp_pool_t));
|
|
|
|
/* First, we figure out how much space to allow per item. We'll want to
|
|
* use make sure we have enough for the overhead plus the item size. */
|
|
alloc_size = (size_t)(STRUCT_OFFSET(mp_allocated_t, u.mem) + item_size);
|
|
/* If the item_size is less than sizeof(next_free), we need to make
|
|
* the allocation bigger. */
|
|
if (alloc_size < sizeof(mp_allocated_t))
|
|
alloc_size = sizeof(mp_allocated_t);
|
|
|
|
/* If we're not an even multiple of ALIGNMENT, round up. */
|
|
if (alloc_size % ALIGNMENT) {
|
|
alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
|
|
}
|
|
if (alloc_size < ALIGNMENT)
|
|
alloc_size = ALIGNMENT;
|
|
ASSERT((alloc_size % ALIGNMENT) == 0);
|
|
|
|
/* Now we figure out how many items fit in each chunk. We need to fit at
|
|
* least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
|
|
* or less than MIN_CHUNK. */
|
|
if (chunk_capacity > MAX_CHUNK)
|
|
chunk_capacity = MAX_CHUNK;
|
|
/* Try to be around a power of 2 in size, since that's what allocators like
|
|
* handing out. 512K-1 byte is a lot better than 512K+1 byte. */
|
|
chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
|
|
while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
|
|
chunk_capacity *= 2;
|
|
if (chunk_capacity < MIN_CHUNK)
|
|
chunk_capacity = MIN_CHUNK;
|
|
|
|
new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
|
|
tor_assert(new_chunk_cap < INT_MAX);
|
|
pool->new_chunk_capacity = (int)new_chunk_cap;
|
|
|
|
pool->item_alloc_size = alloc_size;
|
|
|
|
log_debug(LD_MM, "Capacity is %lu, item size is %lu, alloc size is %lu",
|
|
(unsigned long)pool->new_chunk_capacity,
|
|
(unsigned long)pool->item_alloc_size,
|
|
(unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
|
|
|
|
return pool;
|
|
}
|
|
|
|
/** Helper function for qsort: used to sort pointers to mp_chunk_t into
|
|
* descending order of fullness. */
|
|
static int
|
|
mp_pool_sort_used_chunks_helper(const void *_a, const void *_b)
|
|
{
|
|
mp_chunk_t *a = *(mp_chunk_t**)_a;
|
|
mp_chunk_t *b = *(mp_chunk_t**)_b;
|
|
return b->n_allocated - a->n_allocated;
|
|
}
|
|
|
|
/** Sort the used chunks in <b>pool</b> into descending order of fullness,
|
|
* so that we preferentially fill up mostly full chunks before we make
|
|
* nearly empty chunks less nearly empty. */
|
|
static void
|
|
mp_pool_sort_used_chunks(mp_pool_t *pool)
|
|
{
|
|
int i, n=0, inverted=0;
|
|
mp_chunk_t **chunks, *chunk;
|
|
for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
|
|
++n;
|
|
if (chunk->next && chunk->next->n_allocated > chunk->n_allocated)
|
|
++inverted;
|
|
}
|
|
if (!inverted)
|
|
return;
|
|
//printf("Sort %d/%d\n",inverted,n);
|
|
chunks = ALLOC(sizeof(mp_chunk_t *)*n);
|
|
#ifdef ALLOC_CAN_RETURN_NULL
|
|
if (PREDICT_UNLIKELY(!chunks)) return;
|
|
#endif
|
|
for (i=0,chunk = pool->used_chunks; chunk; chunk = chunk->next)
|
|
chunks[i++] = chunk;
|
|
qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper);
|
|
pool->used_chunks = chunks[0];
|
|
chunks[0]->prev = NULL;
|
|
for (i=1;i<n;++i) {
|
|
chunks[i-1]->next = chunks[i];
|
|
chunks[i]->prev = chunks[i-1];
|
|
}
|
|
chunks[n-1]->next = NULL;
|
|
FREE(chunks);
|
|
mp_pool_assert_ok(pool);
|
|
}
|
|
|
|
/** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
|
|
* excess ones that have been empty for the longest. If
|
|
* <b>keep_recently_used</b> is true, do not free chunks unless they have been
|
|
* empty since the last call to this function.
|
|
**/
|
|
void
|
|
mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used)
|
|
{
|
|
mp_chunk_t *chunk, **first_to_free;
|
|
|
|
mp_pool_sort_used_chunks(pool);
|
|
ASSERT(n_to_keep >= 0);
|
|
|
|
if (keep_recently_used) {
|
|
int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks;
|
|
if (n_to_keep < n_recently_used)
|
|
n_to_keep = n_recently_used;
|
|
}
|
|
|
|
ASSERT(n_to_keep >= 0);
|
|
|
|
first_to_free = &pool->empty_chunks;
|
|
while (*first_to_free && n_to_keep > 0) {
|
|
first_to_free = &(*first_to_free)->next;
|
|
--n_to_keep;
|
|
}
|
|
if (!*first_to_free) {
|
|
pool->min_empty_chunks = pool->n_empty_chunks;
|
|
return;
|
|
}
|
|
|
|
chunk = *first_to_free;
|
|
while (chunk) {
|
|
mp_chunk_t *next = chunk->next;
|
|
chunk->magic = 0xdeadbeef;
|
|
FREE(chunk);
|
|
#ifdef MEMPOOL_STATS
|
|
++pool->total_chunks_freed;
|
|
#endif
|
|
--pool->n_empty_chunks;
|
|
chunk = next;
|
|
}
|
|
|
|
pool->min_empty_chunks = pool->n_empty_chunks;
|
|
*first_to_free = NULL;
|
|
}
|
|
|
|
/** Helper: Given a list of chunks, free all the chunks in the list. */
|
|
static void
|
|
destroy_chunks(mp_chunk_t *chunk)
|
|
{
|
|
mp_chunk_t *next;
|
|
while (chunk) {
|
|
chunk->magic = 0xd3adb33f;
|
|
next = chunk->next;
|
|
FREE(chunk);
|
|
chunk = next;
|
|
}
|
|
}
|
|
|
|
/** Free all space held in <b>pool</b> This makes all pointers returned from
|
|
* mp_pool_get(<b>pool</b>) invalid. */
|
|
void
|
|
mp_pool_destroy(mp_pool_t *pool)
|
|
{
|
|
destroy_chunks(pool->empty_chunks);
|
|
destroy_chunks(pool->used_chunks);
|
|
destroy_chunks(pool->full_chunks);
|
|
memset(pool, 0xe0, sizeof(mp_pool_t));
|
|
FREE(pool);
|
|
}
|
|
|
|
/** Helper: make sure that a given chunk list is not corrupt. */
|
|
static int
|
|
assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
|
|
{
|
|
mp_allocated_t *allocated;
|
|
int n = 0;
|
|
if (chunk)
|
|
ASSERT(chunk->prev == NULL);
|
|
|
|
while (chunk) {
|
|
n++;
|
|
ASSERT(chunk->magic == MP_CHUNK_MAGIC);
|
|
ASSERT(chunk->pool == pool);
|
|
for (allocated = chunk->first_free; allocated;
|
|
allocated = allocated->u.next_free) {
|
|
ASSERT(allocated->in_chunk == chunk);
|
|
}
|
|
if (empty)
|
|
ASSERT(chunk->n_allocated == 0);
|
|
else if (full)
|
|
ASSERT(chunk->n_allocated == chunk->capacity);
|
|
else
|
|
ASSERT(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
|
|
|
|
ASSERT(chunk->capacity == pool->new_chunk_capacity);
|
|
|
|
ASSERT(chunk->mem_size ==
|
|
pool->new_chunk_capacity * pool->item_alloc_size);
|
|
|
|
ASSERT(chunk->next_mem >= chunk->mem &&
|
|
chunk->next_mem <= chunk->mem + chunk->mem_size);
|
|
|
|
if (chunk->next)
|
|
ASSERT(chunk->next->prev == chunk);
|
|
|
|
chunk = chunk->next;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/** Fail with an assertion if <b>pool</b> is not internally consistent. */
|
|
void
|
|
mp_pool_assert_ok(mp_pool_t *pool)
|
|
{
|
|
int n_empty;
|
|
|
|
n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
|
|
assert_chunks_ok(pool, pool->full_chunks, 0, 1);
|
|
assert_chunks_ok(pool, pool->used_chunks, 0, 0);
|
|
|
|
ASSERT(pool->n_empty_chunks == n_empty);
|
|
}
|
|
|
|
#ifdef TOR
|
|
/** Dump information about <b>pool</b>'s memory usage to the Tor log at level
|
|
* <b>severity</b>. */
|
|
/*FFFF uses Tor logging functions. */
|
|
void
|
|
mp_pool_log_status(mp_pool_t *pool, int severity)
|
|
{
|
|
uint64_t bytes_used = 0;
|
|
uint64_t bytes_allocated = 0;
|
|
uint64_t bu = 0, ba = 0;
|
|
mp_chunk_t *chunk;
|
|
int n_full = 0, n_used = 0;
|
|
|
|
ASSERT(pool);
|
|
|
|
for (chunk = pool->empty_chunks; chunk; chunk = chunk->next) {
|
|
bytes_allocated += chunk->mem_size;
|
|
}
|
|
log_fn(severity, LD_MM, U64_FORMAT" bytes in %d empty chunks",
|
|
U64_PRINTF_ARG(bytes_allocated), pool->n_empty_chunks);
|
|
for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
|
|
++n_used;
|
|
bu += chunk->n_allocated * pool->item_alloc_size;
|
|
ba += chunk->mem_size;
|
|
log_fn(severity, LD_MM, " used chunk: %d items allocated",
|
|
chunk->n_allocated);
|
|
}
|
|
log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
|
|
" bytes in %d partially full chunks",
|
|
U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_used);
|
|
bytes_used += bu;
|
|
bytes_allocated += ba;
|
|
bu = ba = 0;
|
|
for (chunk = pool->full_chunks; chunk; chunk = chunk->next) {
|
|
++n_full;
|
|
bu += chunk->n_allocated * pool->item_alloc_size;
|
|
ba += chunk->mem_size;
|
|
}
|
|
log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
|
|
" bytes in %d full chunks",
|
|
U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_full);
|
|
bytes_used += bu;
|
|
bytes_allocated += ba;
|
|
|
|
log_fn(severity, LD_MM, "Total: "U64_FORMAT"/"U64_FORMAT" bytes allocated "
|
|
"for cell pools are full.",
|
|
U64_PRINTF_ARG(bytes_used), U64_PRINTF_ARG(bytes_allocated));
|
|
|
|
#ifdef MEMPOOL_STATS
|
|
log_fn(severity, LD_MM, U64_FORMAT" cell allocations ever; "
|
|
U64_FORMAT" chunk allocations ever; "
|
|
U64_FORMAT" chunk frees ever.",
|
|
U64_PRINTF_ARG(pool->total_items_allocated),
|
|
U64_PRINTF_ARG(pool->total_chunks_allocated),
|
|
U64_PRINTF_ARG(pool->total_chunks_freed));
|
|
#endif
|
|
}
|
|
#endif
|
|
|