mirror of
https://gitlab.torproject.org/tpo/core/tor.git
synced 2025-02-25 07:07:52 +01:00
When we are loading state info from disk, never believe any date in the future. Doing so can keep us from retrying guards, rotating onion keys, storing bandwidth info, etc. Fixes bug 434, and others. Backport candidate, once it has been tested. svn:r11166
1016 lines
34 KiB
C
1016 lines
34 KiB
C
/* Copyright 2004-2007 Roger Dingledine, Nick Mathewson. */
|
|
/* See LICENSE for licensing information */
|
|
/* $Id$ */
|
|
const char hibernate_c_id[] =
|
|
"$Id$";
|
|
|
|
/**
|
|
* \file hibernate.c
|
|
* \brief Functions to close listeners, stop allowing new circuits,
|
|
* etc in preparation for closing down or going dormant; and to track
|
|
* bandwidth and time intervals to know when to hibernate and when to
|
|
* stop hibernating.
|
|
**/
|
|
|
|
/*
|
|
hibernating, phase 1:
|
|
- send destroy in response to create cells
|
|
- send end (policy failed) in response to begin cells
|
|
- close an OR conn when it has no circuits
|
|
|
|
hibernating, phase 2:
|
|
(entered when bandwidth hard limit reached)
|
|
- close all OR/AP/exit conns)
|
|
*/
|
|
|
|
#include "or.h"
|
|
|
|
/** Possible values of hibernate_state */
|
|
typedef enum {
|
|
/** We are running normally. */
|
|
HIBERNATE_STATE_LIVE=1,
|
|
/** We're trying to shut down cleanly, and we'll kill all active connections
|
|
* at shutdown_time. */
|
|
HIBERNATE_STATE_EXITING=2,
|
|
/** We're running low on allocated bandwidth for this period, so we won't
|
|
* accept any new connections. */
|
|
HIBERNATE_STATE_LOWBANDWIDTH=3,
|
|
/** We are hibernating, and we won't wake up till there's more bandwidth to
|
|
* use. */
|
|
HIBERNATE_STATE_DORMANT=4
|
|
} hibernate_state_t;
|
|
|
|
extern long stats_n_seconds_working; /* published uptime */
|
|
|
|
/** Are we currently awake, asleep, running out of bandwidth, or shutting
|
|
* down? */
|
|
static hibernate_state_t hibernate_state = HIBERNATE_STATE_LIVE;
|
|
/** If are hibernating, when do we plan to wake up? Set to 0 if we
|
|
* aren't hibernating. */
|
|
static time_t hibernate_end_time = 0;
|
|
/** If we are shutting down, when do we plan finally exit? Set to 0 if
|
|
* we aren't shutting down. */
|
|
static time_t shutdown_time = 0;
|
|
|
|
/** Possible accounting periods. */
|
|
typedef enum {
|
|
UNIT_MONTH=1, UNIT_WEEK=2, UNIT_DAY=3,
|
|
} time_unit_t;
|
|
|
|
/* Fields for accounting logic. Accounting overview:
|
|
*
|
|
* Accounting is designed to ensure that no more than N bytes are sent in
|
|
* either direction over a given interval (currently, one month, one week, or
|
|
* one day) We could
|
|
* try to do this by choking our bandwidth to a trickle, but that
|
|
* would make our streams useless. Instead, we estimate what our
|
|
* bandwidth usage will be, and guess how long we'll be able to
|
|
* provide that much bandwidth before hitting our limit. We then
|
|
* choose a random time within the accounting interval to come up (so
|
|
* that we don't get 50 Tors running on the 1st of the month and none
|
|
* on the 30th).
|
|
*
|
|
* Each interval runs as follows:
|
|
*
|
|
* 1. We guess our bandwidth usage, based on how much we used
|
|
* last time. We choose a "wakeup time" within the interval to come up.
|
|
* 2. Until the chosen wakeup time, we hibernate.
|
|
* 3. We come up at the wakeup time, and provide bandwidth until we are
|
|
* "very close" to running out.
|
|
* 4. Then we go into low-bandwidth mode, and stop accepting new
|
|
* connections, but provide bandwidth until we run out.
|
|
* 5. Then we hibernate until the end of the interval.
|
|
*
|
|
* If the interval ends before we run out of bandwidth, we go back to
|
|
* step one.
|
|
*/
|
|
|
|
/** How many bytes have we read in this accounting interval? */
|
|
static uint64_t n_bytes_read_in_interval = 0;
|
|
/** How many bytes have we written in this accounting interval? */
|
|
static uint64_t n_bytes_written_in_interval = 0;
|
|
/** How many seconds have we been running this interval? */
|
|
static uint32_t n_seconds_active_in_interval = 0;
|
|
/** When did this accounting interval start? */
|
|
static time_t interval_start_time = 0;
|
|
/** When will this accounting interval end? */
|
|
static time_t interval_end_time = 0;
|
|
/** How far into the accounting interval should we hibernate? */
|
|
static time_t interval_wakeup_time = 0;
|
|
/** How much bandwidth do we 'expect' to use per minute? (0 if we have no
|
|
* info from the last period.) */
|
|
static uint64_t expected_bandwidth_usage = 0;
|
|
/** What unit are we using for our accounting? */
|
|
static time_unit_t cfg_unit = UNIT_MONTH;
|
|
/** How many days,hours,minutes into each unit does our accounting interval
|
|
* start? */
|
|
static int cfg_start_day = 0;
|
|
static int cfg_start_hour = 0;
|
|
static int cfg_start_min = 0;
|
|
|
|
static void reset_accounting(time_t now);
|
|
static int read_bandwidth_usage(void);
|
|
static time_t start_of_accounting_period_after(time_t now);
|
|
static time_t start_of_accounting_period_containing(time_t now);
|
|
static void accounting_set_wakeup_time(void);
|
|
|
|
/* ************
|
|
* Functions for bandwidth accounting.
|
|
* ************/
|
|
|
|
/** Configure accounting start/end time settings based on
|
|
* options->AccountingStart. Return 0 on success, -1 on failure. If
|
|
* <b>validate_only</b> is true, do not change the current settings. */
|
|
int
|
|
accounting_parse_options(or_options_t *options, int validate_only)
|
|
{
|
|
time_unit_t unit;
|
|
int ok, idx;
|
|
long d,h,m;
|
|
smartlist_t *items;
|
|
const char *v = options->AccountingStart;
|
|
const char *s;
|
|
char *cp;
|
|
|
|
if (!v) {
|
|
if (!validate_only) {
|
|
cfg_unit = UNIT_MONTH;
|
|
cfg_start_day = 1;
|
|
cfg_start_hour = 0;
|
|
cfg_start_min = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
items = smartlist_create();
|
|
smartlist_split_string(items, v, NULL,
|
|
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0);
|
|
if (smartlist_len(items)<2) {
|
|
log_warn(LD_CONFIG, "Too few arguments to AccountingStart");
|
|
goto err;
|
|
}
|
|
s = smartlist_get(items,0);
|
|
if (0==strcasecmp(s, "month")) {
|
|
unit = UNIT_MONTH;
|
|
} else if (0==strcasecmp(s, "week")) {
|
|
unit = UNIT_WEEK;
|
|
} else if (0==strcasecmp(s, "day")) {
|
|
unit = UNIT_DAY;
|
|
} else {
|
|
log_warn(LD_CONFIG,
|
|
"Unrecognized accounting unit '%s': only 'month', 'week',"
|
|
" and 'day' are supported.", s);
|
|
goto err;
|
|
}
|
|
|
|
switch (unit) {
|
|
case UNIT_WEEK:
|
|
d = tor_parse_long(smartlist_get(items,1), 10, 1, 7, &ok, NULL);
|
|
if (!ok) {
|
|
log_warn(LD_CONFIG, "Weekly accounting must begin on a day between "
|
|
"1 (Monday) and 7 (Sunday)");
|
|
goto err;
|
|
}
|
|
break;
|
|
case UNIT_MONTH:
|
|
d = tor_parse_long(smartlist_get(items,1), 10, 1, 28, &ok, NULL);
|
|
if (!ok) {
|
|
log_warn(LD_CONFIG, "Monthly accounting must begin on a day between "
|
|
"1 and 28");
|
|
goto err;
|
|
}
|
|
break;
|
|
case UNIT_DAY:
|
|
d = 0;
|
|
break;
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
|
|
idx = unit==UNIT_DAY?1:2;
|
|
if (smartlist_len(items) != (idx+1)) {
|
|
log_warn(LD_CONFIG,"Accounting unit '%s' requires %d argument%s.",
|
|
s, idx, (idx>1)?"s":"");
|
|
goto err;
|
|
}
|
|
s = smartlist_get(items, idx);
|
|
h = tor_parse_long(s, 10, 0, 23, &ok, &cp);
|
|
if (!ok) {
|
|
log_warn(LD_CONFIG,"Accounting start time not parseable: bad hour.");
|
|
goto err;
|
|
}
|
|
if (!cp || *cp!=':') {
|
|
log_warn(LD_CONFIG,
|
|
"Accounting start time not parseable: not in HH:MM format");
|
|
goto err;
|
|
}
|
|
m = tor_parse_long(cp+1, 10, 0, 59, &ok, &cp);
|
|
if (!ok) {
|
|
log_warn(LD_CONFIG, "Accounting start time not parseable: bad minute");
|
|
goto err;
|
|
}
|
|
if (!cp || *cp!='\0') {
|
|
log_warn(LD_CONFIG,
|
|
"Accounting start time not parseable: not in HH:MM format");
|
|
goto err;
|
|
}
|
|
|
|
if (!validate_only) {
|
|
cfg_unit = unit;
|
|
cfg_start_day = (int)d;
|
|
cfg_start_hour = (int)h;
|
|
cfg_start_min = (int)m;
|
|
}
|
|
SMARTLIST_FOREACH(items, char *, item, tor_free(item));
|
|
smartlist_free(items);
|
|
return 0;
|
|
err:
|
|
SMARTLIST_FOREACH(items, char *, item, tor_free(item));
|
|
smartlist_free(items);
|
|
return -1;
|
|
}
|
|
|
|
/** If we want to manage the accounting system and potentially
|
|
* hibernate, return 1, else return 0.
|
|
*/
|
|
int
|
|
accounting_is_enabled(or_options_t *options)
|
|
{
|
|
if (options->AccountingMax)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/** Called from main.c to tell us that <b>seconds</b> seconds have
|
|
* passed, <b>n_read</b> bytes have been read, and <b>n_written</b>
|
|
* bytes have been written. */
|
|
void
|
|
accounting_add_bytes(size_t n_read, size_t n_written, int seconds)
|
|
{
|
|
n_bytes_read_in_interval += n_read;
|
|
n_bytes_written_in_interval += n_written;
|
|
/* If we haven't been called in 10 seconds, we're probably jumping
|
|
* around in time. */
|
|
n_seconds_active_in_interval += (seconds < 10) ? seconds : 0;
|
|
}
|
|
|
|
/** If get_end, return the end of the accounting period that contains
|
|
* the time <b>now</b>. Else, return the start of the accounting
|
|
* period that contains the time <b>now</b> */
|
|
static time_t
|
|
edge_of_accounting_period_containing(time_t now, int get_end)
|
|
{
|
|
int before;
|
|
struct tm tm;
|
|
tor_localtime_r(&now, &tm);
|
|
|
|
/* Set 'before' to true iff the current time is before the hh:mm
|
|
* changeover time for today. */
|
|
before = tm.tm_hour < cfg_start_hour ||
|
|
(tm.tm_hour == cfg_start_hour && tm.tm_min < cfg_start_min);
|
|
|
|
/* Dispatch by unit. First, find the start day of the given period;
|
|
* then, if get_end is true, increment to the end day. */
|
|
switch (cfg_unit)
|
|
{
|
|
case UNIT_MONTH: {
|
|
/* If this is before the Nth, we want the Nth of last month. */
|
|
if (tm.tm_mday < cfg_start_day ||
|
|
(tm.tm_mday < cfg_start_day && before)) {
|
|
--tm.tm_mon;
|
|
}
|
|
/* Otherwise, the month is correct. */
|
|
tm.tm_mday = cfg_start_day;
|
|
if (get_end)
|
|
++tm.tm_mon;
|
|
break;
|
|
}
|
|
case UNIT_WEEK: {
|
|
/* What is the 'target' day of the week in struct tm format? (We
|
|
say Sunday==7; struct tm says Sunday==0.) */
|
|
int wday = cfg_start_day % 7;
|
|
/* How many days do we subtract from today to get to the right day? */
|
|
int delta = (7+tm.tm_wday-wday)%7;
|
|
/* If we are on the right day, but the changeover hasn't happened yet,
|
|
* then subtract a whole week. */
|
|
if (delta == 0 && before)
|
|
delta = 7;
|
|
tm.tm_mday -= delta;
|
|
if (get_end)
|
|
tm.tm_mday += 7;
|
|
break;
|
|
}
|
|
case UNIT_DAY:
|
|
if (before)
|
|
--tm.tm_mday;
|
|
if (get_end)
|
|
++tm.tm_mday;
|
|
break;
|
|
default:
|
|
tor_assert(0);
|
|
}
|
|
|
|
tm.tm_hour = cfg_start_hour;
|
|
tm.tm_min = cfg_start_min;
|
|
tm.tm_sec = 0;
|
|
tm.tm_isdst = -1; /* Autodetect DST */
|
|
return mktime(&tm);
|
|
}
|
|
|
|
/** Return the start of the accounting period containing the time
|
|
* <b>now</b>. */
|
|
static time_t
|
|
start_of_accounting_period_containing(time_t now)
|
|
{
|
|
return edge_of_accounting_period_containing(now, 0);
|
|
}
|
|
|
|
/** Return the start of the accounting period that comes after the one
|
|
* containing the time <b>now</b>. */
|
|
static time_t
|
|
start_of_accounting_period_after(time_t now)
|
|
{
|
|
return edge_of_accounting_period_containing(now, 1);
|
|
}
|
|
|
|
/** Initialize the accounting subsystem. */
|
|
void
|
|
configure_accounting(time_t now)
|
|
{
|
|
/* Try to remember our recorded usage. */
|
|
if (!interval_start_time)
|
|
read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and
|
|
* reset below.*/
|
|
if (!interval_start_time ||
|
|
start_of_accounting_period_after(interval_start_time) <= now) {
|
|
/* We didn't have recorded usage, or we don't have recorded usage
|
|
* for this interval. Start a new interval. */
|
|
log_info(LD_ACCT, "Starting new accounting interval.");
|
|
reset_accounting(now);
|
|
} else if (interval_start_time ==
|
|
start_of_accounting_period_containing(interval_start_time)) {
|
|
log_info(LD_ACCT, "Continuing accounting interval.");
|
|
/* We are in the interval we thought we were in. Do nothing.*/
|
|
interval_end_time = start_of_accounting_period_after(interval_start_time);
|
|
} else {
|
|
log_warn(LD_ACCT,
|
|
"Mismatched accounting interval; starting a fresh one.");
|
|
reset_accounting(now);
|
|
}
|
|
accounting_set_wakeup_time();
|
|
}
|
|
|
|
/** Set expected_bandwidth_usage based on how much we sent/received
|
|
* per minute last interval (if we were up for at least 30 minutes),
|
|
* or based on our declared bandwidth otherwise. */
|
|
static void
|
|
update_expected_bandwidth(void)
|
|
{
|
|
uint64_t used, expected;
|
|
uint64_t max_configured = (get_options()->BandwidthRate * 60);
|
|
|
|
if (n_seconds_active_in_interval < 1800) {
|
|
/* If we haven't gotten enough data last interval, set 'expected'
|
|
* to 0. This will set our wakeup to the start of the interval.
|
|
* Next interval, we'll choose our starting time based on how much
|
|
* we sent this interval.
|
|
*/
|
|
expected = 0;
|
|
} else {
|
|
used = n_bytes_written_in_interval < n_bytes_read_in_interval ?
|
|
n_bytes_read_in_interval : n_bytes_written_in_interval;
|
|
expected = used / (n_seconds_active_in_interval / 60);
|
|
if (expected > max_configured)
|
|
expected = max_configured;
|
|
}
|
|
expected_bandwidth_usage = expected;
|
|
}
|
|
|
|
/** Called at the start of a new accounting interval: reset our
|
|
* expected bandwidth usage based on what happened last time, set up
|
|
* the start and end of the interval, and clear byte/time totals.
|
|
*/
|
|
static void
|
|
reset_accounting(time_t now)
|
|
{
|
|
log_info(LD_ACCT, "Starting new accounting interval.");
|
|
update_expected_bandwidth();
|
|
interval_start_time = start_of_accounting_period_containing(now);
|
|
interval_end_time = start_of_accounting_period_after(interval_start_time);
|
|
n_bytes_read_in_interval = 0;
|
|
n_bytes_written_in_interval = 0;
|
|
n_seconds_active_in_interval = 0;
|
|
}
|
|
|
|
/** Return true iff we should save our bandwidth usage to disk. */
|
|
static INLINE int
|
|
time_to_record_bandwidth_usage(time_t now)
|
|
{
|
|
/* Note every 600 sec */
|
|
#define NOTE_INTERVAL (600)
|
|
/* Or every 20 megabytes */
|
|
#define NOTE_BYTES 20*(1024*1024)
|
|
static uint64_t last_read_bytes_noted = 0;
|
|
static uint64_t last_written_bytes_noted = 0;
|
|
static time_t last_time_noted = 0;
|
|
|
|
if (last_time_noted + NOTE_INTERVAL <= now ||
|
|
last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval ||
|
|
last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval ||
|
|
(interval_end_time && interval_end_time <= now)) {
|
|
last_time_noted = now;
|
|
last_read_bytes_noted = n_bytes_read_in_interval;
|
|
last_written_bytes_noted = n_bytes_written_in_interval;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** Invoked once per second. Checks whether it is time to hibernate,
|
|
* record bandwidth used, etc. */
|
|
void
|
|
accounting_run_housekeeping(time_t now)
|
|
{
|
|
if (now >= interval_end_time) {
|
|
configure_accounting(now);
|
|
}
|
|
if (time_to_record_bandwidth_usage(now)) {
|
|
if (accounting_record_bandwidth_usage(now, get_or_state())) {
|
|
log_warn(LD_FS, "Couldn't record bandwidth usage to disk.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/** When we have no idea how fast we are, how long do we assume it will take
|
|
* us to exhaust our bandwidth? */
|
|
#define GUESS_TIME_TO_USE_BANDWIDTH (24*60*60)
|
|
|
|
/** Based on our interval and our estimated bandwidth, choose a
|
|
* deterministic (but random-ish) time to wake up. */
|
|
static void
|
|
accounting_set_wakeup_time(void)
|
|
{
|
|
char buf[ISO_TIME_LEN+1];
|
|
char digest[DIGEST_LEN];
|
|
crypto_digest_env_t *d_env;
|
|
int time_in_interval;
|
|
uint64_t time_to_exhaust_bw;
|
|
int time_to_consider;
|
|
|
|
if (! identity_key_is_set()) {
|
|
if (init_keys() < 0) {
|
|
log_err(LD_BUG, "Error initializing keys");
|
|
tor_assert(0);
|
|
}
|
|
}
|
|
|
|
format_iso_time(buf, interval_start_time);
|
|
crypto_pk_get_digest(get_identity_key(), digest);
|
|
|
|
d_env = crypto_new_digest_env();
|
|
crypto_digest_add_bytes(d_env, buf, ISO_TIME_LEN);
|
|
crypto_digest_add_bytes(d_env, digest, DIGEST_LEN);
|
|
crypto_digest_get_digest(d_env, digest, DIGEST_LEN);
|
|
crypto_free_digest_env(d_env);
|
|
|
|
if (!expected_bandwidth_usage) {
|
|
char buf1[ISO_TIME_LEN+1];
|
|
char buf2[ISO_TIME_LEN+1];
|
|
format_local_iso_time(buf1, interval_start_time);
|
|
format_local_iso_time(buf2, interval_end_time);
|
|
time_to_exhaust_bw = GUESS_TIME_TO_USE_BANDWIDTH;
|
|
interval_wakeup_time = interval_start_time;
|
|
|
|
log_notice(LD_ACCT,
|
|
"Configured hibernation. This interval begins at %s "
|
|
"and ends at %s. We have no prior estimate for bandwidth, so "
|
|
"we will start out awake and hibernate when we exhaust our quota.",
|
|
buf1, buf2);
|
|
return;
|
|
}
|
|
|
|
time_in_interval = interval_end_time - interval_start_time;
|
|
|
|
time_to_exhaust_bw =
|
|
(get_options()->AccountingMax/expected_bandwidth_usage)*60;
|
|
if (time_to_exhaust_bw > TIME_MAX) {
|
|
time_to_exhaust_bw = TIME_MAX;
|
|
time_to_consider = 0;
|
|
} else {
|
|
time_to_consider = time_in_interval - (int)time_to_exhaust_bw;
|
|
}
|
|
|
|
if (time_to_consider<=0) {
|
|
interval_wakeup_time = interval_start_time;
|
|
} else {
|
|
/* XXX can we simplify this just by picking a random (non-deterministic)
|
|
* time to be up? If we go down and come up, then we pick a new one. Is
|
|
* that good enough? -RD */
|
|
|
|
/* This is not a perfectly unbiased conversion, but it is good enough:
|
|
* in the worst case, the first half of the day is 0.06 percent likelier
|
|
* to be chosen than the last half. */
|
|
interval_wakeup_time = interval_start_time +
|
|
(get_uint32(digest) % time_to_consider);
|
|
|
|
format_iso_time(buf, interval_wakeup_time);
|
|
}
|
|
|
|
{
|
|
char buf1[ISO_TIME_LEN+1];
|
|
char buf2[ISO_TIME_LEN+1];
|
|
char buf3[ISO_TIME_LEN+1];
|
|
char buf4[ISO_TIME_LEN+1];
|
|
time_t down_time;
|
|
if (interval_wakeup_time+time_to_exhaust_bw > TIME_MAX)
|
|
down_time = TIME_MAX;
|
|
else
|
|
down_time = (time_t)(interval_wakeup_time+time_to_exhaust_bw);
|
|
if (down_time>interval_end_time)
|
|
down_time = interval_end_time;
|
|
format_local_iso_time(buf1, interval_start_time);
|
|
format_local_iso_time(buf2, interval_wakeup_time);
|
|
format_local_iso_time(buf3, down_time);
|
|
format_local_iso_time(buf4, interval_end_time);
|
|
|
|
log_notice(LD_ACCT,
|
|
"Configured hibernation. This interval began at %s; "
|
|
"the scheduled wake-up time %s %s; "
|
|
"we expect%s to exhaust our quota for this interval around %s; "
|
|
"the next interval begins at %s (all times local)",
|
|
buf1,
|
|
time(NULL)<interval_wakeup_time?"is":"was", buf2,
|
|
time(NULL)<down_time?"":"ed", buf3,
|
|
buf4);
|
|
}
|
|
}
|
|
|
|
/* This rounds 0 up to 1000, but that's actually a feature. */
|
|
#define ROUND_UP(x) (((x) + 0x3ff) & ~0x3ff)
|
|
#define BW_ACCOUNTING_VERSION 1
|
|
/** Save all our bandwidth tracking information to disk. Return 0 on
|
|
* success, -1 on failure. */
|
|
int
|
|
accounting_record_bandwidth_usage(time_t now, or_state_t *state)
|
|
{
|
|
char buf[128];
|
|
char fname[512];
|
|
char time1[ISO_TIME_LEN+1];
|
|
char time2[ISO_TIME_LEN+1];
|
|
char *cp = buf;
|
|
time_t tmp;
|
|
int r = 0;
|
|
uint64_t expected;
|
|
static time_t last_recorded = 0;
|
|
|
|
/* First, update bw_accounting. Until 0.1.2.5-alpha, this was the only place
|
|
* we stored this information. The format is:
|
|
* Version\nTime\nTime\nRead\nWrite\nSeconds\nExpected-Rate\n */
|
|
|
|
format_iso_time(time1, interval_start_time);
|
|
format_iso_time(time2, now);
|
|
/* now check to see if they're valid times -- if they're not,
|
|
* and we write them, then tor will refuse to start next time. */
|
|
if (parse_iso_time(time1, &tmp) || parse_iso_time(time2, &tmp)) {
|
|
log_warn(LD_ACCT, "Created a time that we refused to parse.");
|
|
return -1;
|
|
}
|
|
expected = expected_bandwidth_usage;
|
|
/* Cap this value, since older versions won't parse a uint64_t here. */
|
|
if (expected > UINT32_MAX)
|
|
expected = UINT32_MAX;
|
|
tor_snprintf(cp, sizeof(buf),
|
|
"%d\n%s\n%s\n"U64_FORMAT"\n"U64_FORMAT"\n%lu\n%lu\n",
|
|
BW_ACCOUNTING_VERSION,
|
|
time1,
|
|
time2,
|
|
U64_PRINTF_ARG(ROUND_UP(n_bytes_read_in_interval)),
|
|
U64_PRINTF_ARG(ROUND_UP(n_bytes_written_in_interval)),
|
|
(unsigned long)n_seconds_active_in_interval,
|
|
(unsigned long)expected);
|
|
tor_snprintf(fname, sizeof(fname), "%s"PATH_SEPARATOR"bw_accounting",
|
|
get_options()->DataDirectory);
|
|
if (!get_options()->AvoidDiskWrites || (last_recorded + 3600 < now)) {
|
|
r = write_str_to_file(fname, buf, 0);
|
|
last_recorded = now;
|
|
}
|
|
|
|
/* Now update the state */
|
|
state->AccountingIntervalStart = interval_start_time;
|
|
state->AccountingBytesReadInInterval = ROUND_UP(n_bytes_read_in_interval);
|
|
state->AccountingBytesWrittenInInterval =
|
|
ROUND_UP(n_bytes_written_in_interval);
|
|
state->AccountingSecondsActive = n_seconds_active_in_interval;
|
|
state->AccountingExpectedUsage = expected_bandwidth_usage;
|
|
|
|
or_state_mark_dirty(state,
|
|
now+(get_options()->AvoidDiskWrites ? 7200 : 60));
|
|
|
|
return r;
|
|
}
|
|
#undef ROUND_UP
|
|
|
|
/** Read stored accounting information from disk. Return 0 on success;
|
|
* return -1 and change nothing on failure. */
|
|
static int
|
|
read_bandwidth_usage(void)
|
|
{
|
|
char *s = NULL;
|
|
char fname[512];
|
|
time_t t1, t2;
|
|
uint64_t n_read, n_written;
|
|
uint32_t expected_bw, n_seconds;
|
|
smartlist_t *elts = NULL;
|
|
int ok, use_state=0, r=-1;
|
|
or_state_t *state = get_or_state();
|
|
|
|
tor_snprintf(fname, sizeof(fname), "%s/bw_accounting",
|
|
get_options()->DataDirectory);
|
|
elts = smartlist_create();
|
|
if ((s = read_file_to_str(fname, 0, NULL)) == NULL) {
|
|
/* We have an old-format bw_accounting file. */
|
|
use_state = 1;
|
|
}
|
|
if (!use_state) {
|
|
smartlist_split_string(elts, s, "\n",
|
|
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0);
|
|
tor_free(s);
|
|
|
|
if (smartlist_len(elts)<1 ||
|
|
atoi(smartlist_get(elts,0)) != BW_ACCOUNTING_VERSION) {
|
|
log_warn(LD_ACCT, "Unrecognized bw_accounting file version: %s",
|
|
(const char*)smartlist_get(elts,0));
|
|
use_state = 1;
|
|
}
|
|
}
|
|
if (!use_state && smartlist_len(elts) < 7) {
|
|
log_warn(LD_ACCT, "Corrupted bw_accounting file: %d lines",
|
|
smartlist_len(elts));
|
|
use_state = 1;
|
|
}
|
|
if (!use_state && parse_iso_time(smartlist_get(elts,2), &t2)) {
|
|
log_warn(LD_ACCT, "Error parsing bandwidth usage last-written time");
|
|
use_state = 1;
|
|
}
|
|
if (use_state || t2 <= state->LastWritten) {
|
|
/* Okay; it looks like the state file is more up-to-date than the
|
|
* bw_accounting file, or the bw_accounting file is nonexistant,
|
|
* or the bw_accounting file is corrupt.
|
|
*/
|
|
log_info(LD_ACCT, "Reading bandwdith accounting data from state file");
|
|
n_bytes_read_in_interval = state->AccountingBytesReadInInterval;
|
|
n_bytes_written_in_interval = state->AccountingBytesWrittenInInterval;
|
|
n_seconds_active_in_interval = state->AccountingSecondsActive;
|
|
interval_start_time = state->AccountingIntervalStart;
|
|
expected_bandwidth_usage = state->AccountingExpectedUsage;
|
|
r = 0;
|
|
goto done;
|
|
}
|
|
|
|
if (parse_iso_time(smartlist_get(elts,1), &t1)) {
|
|
log_warn(LD_ACCT, "Error parsing bandwidth usage start time.");
|
|
goto done;
|
|
}
|
|
n_read = tor_parse_uint64(smartlist_get(elts,3), 10, 0, UINT64_MAX,
|
|
&ok, NULL);
|
|
if (!ok) {
|
|
log_warn(LD_ACCT, "Error parsing number of bytes read");
|
|
goto done;
|
|
}
|
|
n_written = tor_parse_uint64(smartlist_get(elts,4), 10, 0, UINT64_MAX,
|
|
&ok, NULL);
|
|
if (!ok) {
|
|
log_warn(LD_ACCT, "Error parsing number of bytes written");
|
|
goto done;
|
|
}
|
|
n_seconds = (uint32_t)tor_parse_ulong(smartlist_get(elts,5), 10,0,ULONG_MAX,
|
|
&ok, NULL);
|
|
if (!ok) {
|
|
log_warn(LD_ACCT, "Error parsing number of seconds live");
|
|
goto done;
|
|
}
|
|
expected_bw =(uint32_t)tor_parse_ulong(smartlist_get(elts,6), 10,0,ULONG_MAX,
|
|
&ok, NULL);
|
|
if (!ok) {
|
|
log_warn(LD_ACCT, "Error parsing expected bandwidth");
|
|
goto done;
|
|
}
|
|
|
|
/* XXXX020 do something if the interval "starts" far in the future?
|
|
* or do we alrady handle that. */
|
|
|
|
n_bytes_read_in_interval = n_read;
|
|
n_bytes_written_in_interval = n_written;
|
|
n_seconds_active_in_interval = n_seconds;
|
|
interval_start_time = t1;
|
|
expected_bandwidth_usage = expected_bw;
|
|
|
|
log_info(LD_ACCT,
|
|
"Successfully read bandwidth accounting file written at %s "
|
|
"for interval starting at %s. We have been active for %lu seconds in "
|
|
"this interval. At the start of the interval, we expected to use "
|
|
"about %lu KB per second. ("U64_FORMAT" bytes read so far, "
|
|
U64_FORMAT" bytes written so far)",
|
|
(char*)smartlist_get(elts,2),
|
|
(char*)smartlist_get(elts,1),
|
|
(unsigned long)n_seconds_active_in_interval,
|
|
(unsigned long)(expected_bandwidth_usage*1024/60),
|
|
U64_PRINTF_ARG(n_bytes_read_in_interval),
|
|
U64_PRINTF_ARG(n_bytes_written_in_interval));
|
|
|
|
r = 0;
|
|
done:
|
|
if (elts) {
|
|
SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp));
|
|
smartlist_free(elts);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
/** Return true iff we have sent/received all the bytes we are willing
|
|
* to send/receive this interval. */
|
|
static int
|
|
hibernate_hard_limit_reached(void)
|
|
{
|
|
uint64_t hard_limit = get_options()->AccountingMax;
|
|
if (!hard_limit)
|
|
return 0;
|
|
return n_bytes_read_in_interval >= hard_limit
|
|
|| n_bytes_written_in_interval >= hard_limit;
|
|
}
|
|
|
|
/** Return true iff we have sent/received almost all the bytes we are willing
|
|
* to send/receive this interval. */
|
|
static int
|
|
hibernate_soft_limit_reached(void)
|
|
{
|
|
uint64_t soft_limit = DBL_TO_U64(U64_TO_DBL(get_options()->AccountingMax)
|
|
* .95);
|
|
if (!soft_limit)
|
|
return 0;
|
|
return n_bytes_read_in_interval >= soft_limit
|
|
|| n_bytes_written_in_interval >= soft_limit;
|
|
}
|
|
|
|
/** Called when we get a SIGINT, or when bandwidth soft limit is
|
|
* reached. Puts us into "loose hibernation": we don't accept new
|
|
* connections, but we continue handling old ones. */
|
|
static void
|
|
hibernate_begin(hibernate_state_t new_state, time_t now)
|
|
{
|
|
connection_t *conn;
|
|
or_options_t *options = get_options();
|
|
|
|
if (new_state == HIBERNATE_STATE_EXITING &&
|
|
hibernate_state != HIBERNATE_STATE_LIVE) {
|
|
log_notice(LD_GENERAL,"Sigint received %s; exiting now.",
|
|
hibernate_state == HIBERNATE_STATE_EXITING ?
|
|
"a second time" : "while hibernating");
|
|
tor_cleanup();
|
|
exit(0);
|
|
}
|
|
|
|
/* close listeners. leave control listener(s). */
|
|
while ((conn = connection_get_by_type(CONN_TYPE_OR_LISTENER)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_AP_LISTENER)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_AP_TRANS_LISTENER)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_AP_DNS_LISTENER)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_AP_NATD_LISTENER)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_DIR_LISTENER))) {
|
|
log_info(LD_NET,"Closing listener type %d", conn->type);
|
|
connection_mark_for_close(conn);
|
|
}
|
|
|
|
/* XXX kill intro point circs */
|
|
/* XXX upload rendezvous service descriptors with no intro points */
|
|
|
|
if (new_state == HIBERNATE_STATE_EXITING) {
|
|
log_notice(LD_GENERAL,"Interrupt: will shut down in %d seconds. Interrupt "
|
|
"again to exit now.", options->ShutdownWaitLength);
|
|
shutdown_time = time(NULL) + options->ShutdownWaitLength;
|
|
} else { /* soft limit reached */
|
|
hibernate_end_time = interval_end_time;
|
|
}
|
|
|
|
hibernate_state = new_state;
|
|
accounting_record_bandwidth_usage(now, get_or_state());
|
|
|
|
or_state_mark_dirty(get_or_state(),
|
|
get_options()->AvoidDiskWrites ? now+600 : 0);
|
|
}
|
|
|
|
/** Called when we've been hibernating and our timeout is reached. */
|
|
static void
|
|
hibernate_end(hibernate_state_t new_state)
|
|
{
|
|
tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH ||
|
|
hibernate_state == HIBERNATE_STATE_DORMANT);
|
|
|
|
/* listeners will be relaunched in run_scheduled_events() in main.c */
|
|
log_notice(LD_ACCT,"Hibernation period ended. Resuming normal activity.");
|
|
|
|
hibernate_state = new_state;
|
|
hibernate_end_time = 0; /* no longer hibernating */
|
|
stats_n_seconds_working = 0; /* reset published uptime */
|
|
}
|
|
|
|
/** A wrapper around hibernate_begin, for when we get SIGINT. */
|
|
void
|
|
hibernate_begin_shutdown(void)
|
|
{
|
|
hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL));
|
|
}
|
|
|
|
/** Return true iff we are currently hibernating. */
|
|
int
|
|
we_are_hibernating(void)
|
|
{
|
|
return hibernate_state != HIBERNATE_STATE_LIVE;
|
|
}
|
|
|
|
/** If we aren't currently dormant, close all connections and become
|
|
* dormant. */
|
|
static void
|
|
hibernate_go_dormant(time_t now)
|
|
{
|
|
connection_t *conn;
|
|
|
|
if (hibernate_state == HIBERNATE_STATE_DORMANT)
|
|
return;
|
|
else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH)
|
|
hibernate_state = HIBERNATE_STATE_DORMANT;
|
|
else
|
|
hibernate_begin(HIBERNATE_STATE_DORMANT, now);
|
|
|
|
log_notice(LD_ACCT,"Going dormant. Blowing away remaining connections.");
|
|
|
|
/* Close all OR/AP/exit conns. Leave dir conns because we still want
|
|
* to be able to upload server descriptors so people know we're still
|
|
* running, and download directories so we can detect if we're obsolete.
|
|
* Leave control conns because we still want to be controllable.
|
|
*/
|
|
while ((conn = connection_get_by_type(CONN_TYPE_OR)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_AP)) ||
|
|
(conn = connection_get_by_type(CONN_TYPE_EXIT))) {
|
|
if (CONN_IS_EDGE(conn))
|
|
connection_edge_end(TO_EDGE_CONN(conn), END_STREAM_REASON_HIBERNATING);
|
|
log_info(LD_NET,"Closing conn type %d", conn->type);
|
|
if (conn->type == CONN_TYPE_AP) /* send socks failure if needed */
|
|
connection_mark_unattached_ap(TO_EDGE_CONN(conn),
|
|
END_STREAM_REASON_HIBERNATING);
|
|
else
|
|
connection_mark_for_close(conn);
|
|
}
|
|
|
|
if (now < interval_wakeup_time)
|
|
hibernate_end_time = interval_wakeup_time;
|
|
else
|
|
hibernate_end_time = interval_end_time;
|
|
|
|
accounting_record_bandwidth_usage(now, get_or_state());
|
|
|
|
or_state_mark_dirty(get_or_state(),
|
|
get_options()->AvoidDiskWrites ? now+600 : 0);
|
|
}
|
|
|
|
/** Called when hibernate_end_time has arrived. */
|
|
static void
|
|
hibernate_end_time_elapsed(time_t now)
|
|
{
|
|
char buf[ISO_TIME_LEN+1];
|
|
|
|
/* The interval has ended, or it is wakeup time. Find out which. */
|
|
accounting_run_housekeeping(now);
|
|
if (interval_wakeup_time <= now) {
|
|
/* The interval hasn't changed, but interval_wakeup_time has passed.
|
|
* It's time to wake up and start being a server. */
|
|
hibernate_end(HIBERNATE_STATE_LIVE);
|
|
return;
|
|
} else {
|
|
/* The interval has changed, and it isn't time to wake up yet. */
|
|
hibernate_end_time = interval_wakeup_time;
|
|
format_iso_time(buf,interval_wakeup_time);
|
|
if (hibernate_state != HIBERNATE_STATE_DORMANT) {
|
|
/* We weren't sleeping before; we should sleep now. */
|
|
log_notice(LD_ACCT,
|
|
"Accounting period ended. Commencing hibernation until "
|
|
"%s GMT", buf);
|
|
hibernate_go_dormant(now);
|
|
} else {
|
|
log_notice(LD_ACCT,
|
|
"Accounting period ended. This period, we will hibernate"
|
|
" until %s GMT",buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Consider our environment and decide if it's time
|
|
* to start/stop hibernating.
|
|
*/
|
|
void
|
|
consider_hibernation(time_t now)
|
|
{
|
|
int accounting_enabled = get_options()->AccountingMax != 0;
|
|
char buf[ISO_TIME_LEN+1];
|
|
|
|
/* If we're in 'exiting' mode, then we just shut down after the interval
|
|
* elapses. */
|
|
if (hibernate_state == HIBERNATE_STATE_EXITING) {
|
|
tor_assert(shutdown_time);
|
|
if (shutdown_time <= now) {
|
|
log_notice(LD_GENERAL, "Clean shutdown finished. Exiting.");
|
|
tor_cleanup();
|
|
exit(0);
|
|
}
|
|
return; /* if exiting soon, don't worry about bandwidth limits */
|
|
}
|
|
|
|
if (hibernate_state == HIBERNATE_STATE_DORMANT) {
|
|
/* We've been hibernating because of bandwidth accounting. */
|
|
tor_assert(hibernate_end_time);
|
|
if (hibernate_end_time > now && accounting_enabled) {
|
|
/* If we're hibernating, don't wake up until it's time, regardless of
|
|
* whether we're in a new interval. */
|
|
return ;
|
|
} else {
|
|
hibernate_end_time_elapsed(now);
|
|
}
|
|
}
|
|
|
|
/* Else, we aren't hibernating. See if it's time to start hibernating, or to
|
|
* go dormant. */
|
|
if (hibernate_state == HIBERNATE_STATE_LIVE) {
|
|
if (hibernate_soft_limit_reached()) {
|
|
log_notice(LD_ACCT,
|
|
"Bandwidth soft limit reached; commencing hibernation.");
|
|
hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now);
|
|
} else if (accounting_enabled && now < interval_wakeup_time) {
|
|
format_local_iso_time(buf,interval_wakeup_time);
|
|
log_notice(LD_ACCT,
|
|
"Commencing hibernation. We will wake up at %s local time.",
|
|
buf);
|
|
hibernate_go_dormant(now);
|
|
}
|
|
}
|
|
|
|
if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) {
|
|
if (!accounting_enabled) {
|
|
hibernate_end_time_elapsed(now);
|
|
} else if (hibernate_hard_limit_reached()) {
|
|
hibernate_go_dormant(now);
|
|
} else if (hibernate_end_time <= now) {
|
|
/* The hibernation period ended while we were still in lowbandwidth.*/
|
|
hibernate_end_time_elapsed(now);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Helper function: called when we get a GETINFO request for an
|
|
* accounting-related key on the control connection <b>conn</b>. If we can
|
|
* answer the request for <b>question</b>, then set *<b>answer</b> to a newly
|
|
* allocated string holding the result. Otherwise, set *<b>answer</b> to
|
|
* NULL. */
|
|
int
|
|
getinfo_helper_accounting(control_connection_t *conn,
|
|
const char *question, char **answer)
|
|
{
|
|
(void) conn;
|
|
if (!strcmp(question, "accounting/enabled")) {
|
|
*answer = tor_strdup(accounting_is_enabled(get_options()) ? "1" : "0");
|
|
} else if (!strcmp(question, "accounting/hibernating")) {
|
|
if (hibernate_state == HIBERNATE_STATE_DORMANT)
|
|
*answer = tor_strdup("hard");
|
|
else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH)
|
|
*answer = tor_strdup("soft");
|
|
else
|
|
*answer = tor_strdup("awake");
|
|
} else if (!strcmp(question, "accounting/bytes")) {
|
|
*answer = tor_malloc(32);
|
|
tor_snprintf(*answer, 32, U64_FORMAT" "U64_FORMAT,
|
|
U64_PRINTF_ARG(n_bytes_read_in_interval),
|
|
U64_PRINTF_ARG(n_bytes_written_in_interval));
|
|
} else if (!strcmp(question, "accounting/bytes-left")) {
|
|
uint64_t limit = get_options()->AccountingMax;
|
|
uint64_t read_left = 0, write_left = 0;
|
|
if (n_bytes_read_in_interval < limit)
|
|
read_left = limit - n_bytes_read_in_interval;
|
|
if (n_bytes_written_in_interval < limit)
|
|
write_left = limit - n_bytes_written_in_interval;
|
|
*answer = tor_malloc(64);
|
|
tor_snprintf(*answer, 64, U64_FORMAT" "U64_FORMAT,
|
|
U64_PRINTF_ARG(read_left), U64_PRINTF_ARG(write_left));
|
|
} else if (!strcmp(question, "accounting/interval-start")) {
|
|
*answer = tor_malloc(ISO_TIME_LEN+1);
|
|
format_iso_time(*answer, interval_start_time);
|
|
} else if (!strcmp(question, "accounting/interval-wake")) {
|
|
*answer = tor_malloc(ISO_TIME_LEN+1);
|
|
format_iso_time(*answer, interval_wakeup_time);
|
|
} else if (!strcmp(question, "accounting/interval-end")) {
|
|
*answer = tor_malloc(ISO_TIME_LEN+1);
|
|
format_iso_time(*answer, interval_end_time);
|
|
} else {
|
|
*answer = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|