responding to Roger's comments

svn:r3425
This commit is contained in:
Geoff Goodell 2005-01-24 00:00:46 +00:00
parent 00e1818fff
commit 055ea70d3e

View file

@ -169,15 +169,19 @@ Piece three: (optional)
5. Regarding "Blossom: an unstructured overlay network for end-to-end
connectivity."
Define "transport domain" as a set of nodes who can all mutually name each
other directly, using transport-layer (e.g. HOST:PORT) naming.
Define "clique" as a set of nodes who can all mutually contact each other directly,
using transport-layer (e.g. HOST:PORT) naming.
Neither transport domains and cliques form a partition of the set of all nodes.
Just as cliques may overlap in theoretical graphs, transport domains and
cliques may overlap in the context of Blossom.
In this section we address possible solutions to the problem of how to allow
Tor routers in different transport domains to communicate.
[Can we have a one-sentence definition of transport domain here? If there
are 5 servers on the Internet as we know it and suddenly one link between
a pair of them catches fire, how many transport domains are involved now?
What if one link is down permanently but the rest work? Is "in the same
transport domain as" a symmetric property?]
First, we presume that for every interface between transport domains A and B,
one Tor router T_A exists in transport domain A, one Tor router T_B exists in
transport domain B, and (without loss of generality) T_A can open a persistent
@ -198,17 +202,59 @@ servers. These directory servers can be within the same transport domain, but
they need not be. The trick is that if a directory server is in another
transport domain, then that directory server must know through which Tor
routers to send messages destined for the Tor router in question.
[We are assuming that routers in the non-primary transport domain (the
primary one being the one with dirservers) know how to get to the primary
transport domain, either through Tor or other voodoo, to publish to the
hard-coded dirservers.]
Descriptors
for Blossom routers held by the directory server must contain a special field
for specifying a path through the overlay (i.e. an ordered list of router
Blossom routers can advertise themselves to other transport domains in two
ways:
(1) Directly push the descriptor to a directory server in the other transport
domain. This probably works particularly well if the other transport domain is
"the Internet", or if there are hard-coded directory servers in "the Internet".
The router has the responsibility to inform the directory server about which
routers can be used to reach it.
(2) Push the descriptor to a directory server in the same transport domain.
This is the easiest solution for the router, but it relies upon the existence
of a directory server in the same transport domain that is capable of
communicating with directory servers in the remote transport domain. In order
for this to work, some individual Tor routers must have published their
descriptors in remote transport domains (i.e. followed the first option) in
order to provide a link by which directory servers can communiate
bidirectionally.
If all directory servers are within the same transport domain, then approach
(1) is sufficient: routers can exist within multiple transport domains, and as
long as the network of transport domains is fully connected by bridges, any
router will be able to access any other router in a foreign transport domain
simply by extending along the path specified by the directory server. However,
we want the system to be truly decentralized, which means not electing any
particular transport domain to be the master domain in which entries are
published.
This is the explanation for (2): in order for a directory server to share
information with a directory server in a foreign transport domain to which it
cannot speak directly, it must use Tor, which means referring to the other
directory server by using a router in the foreign transport domain. However,
in order to use Tor, it must be able to reach that router, which means that a
descriptor for that router must exist in its table, along with a means of
reaching it. Therefore, in order for a mutual exchange of information between
routers in transport domain A and those in transport domain B to be possible,
when routers in transport domain A cannot establish direct connections with
routers in transport domain B, then some router in transport domain B must have
pushed its descriptor to a directory server in transport domain A, so that the
directory server in transport domain A can use that router to reach the
directory server in transport domain B.
Descriptors for Blossom routers are read-only, as for regular Tor routers, so
directory servers cannot modify them. However, Tor directory servers also
publish a "network-status" page that provide information about which nodes are
up and which are not. Directory servers could provide an additional field for
Blossom nodes. For each Blossom node, the directory server specifies a set of
paths (may be only one) through the overlay (i.e. an ordered list of router
names/IDs) to a router in a foreign transport domain. (This field may be a set
of paths rather than a single path.) A new router publishing to a directory
server in a foreign transport should include a list of routers. This list
should be either:
of paths rather than a single path.)
A new router publishing to a directory server in a foreign transport should
include a list of routers. This list should be either:
a. ...a list of routers to which the router has persistent connections, or, if
the new router does not have any persistent connections,
@ -218,35 +264,12 @@ same transport domain.
The directory server will be able to use this information to derive a path to
the new router, as follows. If the new router used approach (a), then the
directory server will define the same path(s) in the descriptors for the
router(s) specified in the list, with the corresponding specified router
appended to each path. If the new router used approach (b), then the directory
server will define the same path(s) in the descriptors for the routers
specified in the list. The directory server will then insert the newly defined
path into the descriptor from the router.
[Dirservers can't modify server descriptors; they're self-certifying. -RD]
If all directory servers are within the same transport domain, then the problem
is solved: routers can exist within multiple transport domains, and as long as
the network of transport domains is fully connected by bridges, any router will
be able to access any other router in a foreign transport domain simply by
extending along the path specified by the directory server. However, we want
the system to be truly decentralized, which means not electing any particular
transport domain to be the master domain in which entries are published.
Generally speaking, directory servers share information with each other about
routers. In order for a directory server to share information with a directory
server in a foreign transport domain to which it cannot speak directly, it must
use Tor, which means referring to the other directory server by using a router
in the foreign transport domain. However, in order to use Tor, it must be able
to reach that router, which means that a descriptor for that router must exist
in its table, along with a means of reaching it. Therefore, in order for a
mutual exchange of information between routers in transport domain A and those
in transport domain B to be possible, when routers in transport domain A cannot
establish direct connections with routers in transport domain B, then some
router in transport domain B must have pushed its descriptor to a directory
server in transport domain A, so that the directory server in transport domain
A can use that router to reach the directory server in transport domain B.
directory server will define the set of paths to the new router as union of the
set of paths to the routers on the list with the name of the last hop appended
to each path. If the new router used approach (b), then the directory server
will define the paths to the new router as the union of the set of paths to the
routers specified in the list. The directory server will then insert the newly
defined path into the field in the network-status page from the router.
When confronted with the choice of multiple different paths to reach the same
router, the Blossom nodes may use a route selection protocol similar in design
@ -254,7 +277,11 @@ to that used by BGP (may be a simple distance-vector route selection procedure
that only takes into account path length, or may be more complex to avoid
loops, cache results, etc.) in order to choose the best one.
[How does this work with exit policies (how do we enumerate all resources
in our transport domain?), and translating resources that we want to
get to to servers that can reach them?]
If a .exit name is not provided, then a path will be chosen whose nodes are all
among the set of nodes provided by the directory server that are believed to be
in the same transport domain (i.e. no explicit path). Thus, there should be no
surprises to the client. All routers should be careful to define their exit
policies carefully, with the knowledge that clients from potentially any
transport domain could access that which is not explicitly restricted.