2018-04-06 21:23:29 +00:00
|
|
|
/* Copyright (c) 2001, Matej Pfajfar.
|
|
|
|
* Copyright (c) 2001-2004, Roger Dingledine.
|
|
|
|
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
|
|
|
|
* Copyright (c) 2007-2018, The Tor Project, Inc. */
|
|
|
|
/* See LICENSE for licensing information */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \file crypto_rand.c
|
|
|
|
*
|
|
|
|
* \brief Functions for initialising and seeding (pseudo-)random
|
|
|
|
* number generators, and working with randomness.
|
|
|
|
**/
|
|
|
|
|
|
|
|
#ifndef CRYPTO_RAND_PRIVATE
|
|
|
|
#define CRYPTO_RAND_PRIVATE
|
|
|
|
|
2018-06-20 09:35:05 -04:00
|
|
|
#include "common/crypto_rand.h"
|
2018-05-03 16:14:38 -04:00
|
|
|
|
2018-04-06 21:23:29 +00:00
|
|
|
#ifdef _WIN32
|
|
|
|
#include <windows.h>
|
|
|
|
#include <wincrypt.h>
|
|
|
|
#endif /* defined(_WIN32) */
|
|
|
|
|
2018-06-20 09:35:05 -04:00
|
|
|
#include "common/container.h"
|
|
|
|
#include "common/compat.h"
|
|
|
|
#include "common/compat_openssl.h"
|
|
|
|
#include "common/crypto_util.h"
|
|
|
|
#include "common/sandbox.h"
|
|
|
|
#include "common/testsupport.h"
|
|
|
|
#include "common/torlog.h"
|
|
|
|
#include "common/util.h"
|
|
|
|
#include "common/util_format.h"
|
2018-04-06 21:23:29 +00:00
|
|
|
|
|
|
|
DISABLE_GCC_WARNING(redundant-decls)
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
ENABLE_GCC_WARNING(redundant-decls)
|
|
|
|
|
|
|
|
#if __GNUC__ && GCC_VERSION >= 402
|
|
|
|
#if GCC_VERSION >= 406
|
|
|
|
#pragma GCC diagnostic pop
|
|
|
|
#else
|
|
|
|
#pragma GCC diagnostic warning "-Wredundant-decls"
|
|
|
|
#endif
|
|
|
|
#endif /* __GNUC__ && GCC_VERSION >= 402 */
|
|
|
|
|
|
|
|
#ifdef HAVE_FCNTL_H
|
|
|
|
#include <fcntl.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_FCNTL_H
|
|
|
|
#include <sys/fcntl.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_STAT_H
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
2018-05-07 12:43:39 -05:00
|
|
|
#ifdef HAVE_SYS_SYSCALL_H
|
|
|
|
#include <sys/syscall.h>
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_RANDOM_H
|
|
|
|
#include <sys/random.h>
|
|
|
|
#endif
|
2018-04-06 21:23:29 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* How many bytes of entropy we add at once.
|
|
|
|
*
|
|
|
|
* This is how much entropy OpenSSL likes to add right now, so maybe it will
|
|
|
|
* work for us too.
|
|
|
|
**/
|
|
|
|
#define ADD_ENTROPY 32
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Longest recognized DNS query.
|
|
|
|
**/
|
|
|
|
#define MAX_DNS_LABEL_SIZE 63
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Largest strong entropy request permitted.
|
|
|
|
**/
|
|
|
|
#define MAX_STRONGEST_RAND_SIZE 256
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Set the seed of the weak RNG to a random value.
|
|
|
|
**/
|
|
|
|
void
|
|
|
|
crypto_seed_weak_rng(tor_weak_rng_t *rng)
|
|
|
|
{
|
|
|
|
unsigned seed;
|
|
|
|
crypto_rand((void*)&seed, sizeof(seed));
|
|
|
|
tor_init_weak_random(rng, seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
|
|
int break_strongest_rng_syscall = 0;
|
|
|
|
int break_strongest_rng_fallback = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
* via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
|
|
|
|
* failure. A maximum request size of 256 bytes is imposed.
|
|
|
|
**/
|
|
|
|
static int
|
|
|
|
crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
|
|
|
|
{
|
|
|
|
tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
|
|
|
|
|
|
|
|
/* We only log at notice-level here because in the case that this function
|
|
|
|
* fails the crypto_strongest_rand_raw() caller will log with a warning-level
|
|
|
|
* message and let crypto_strongest_rand() error out and finally terminating
|
|
|
|
* Tor with an assertion error.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
|
|
if (break_strongest_rng_syscall)
|
|
|
|
return -1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(_WIN32)
|
|
|
|
static int provider_set = 0;
|
|
|
|
static HCRYPTPROV provider;
|
|
|
|
|
|
|
|
if (!provider_set) {
|
|
|
|
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
|
|
|
|
CRYPT_VERIFYCONTEXT)) {
|
|
|
|
log_notice(LD_CRYPTO, "Unable to set Windows CryptoAPI provider [1].");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
provider_set = 1;
|
|
|
|
}
|
|
|
|
if (!CryptGenRandom(provider, out_len, out)) {
|
|
|
|
log_notice(LD_CRYPTO, "Unable get entropy from the Windows CryptoAPI.");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
#elif defined(__linux__) && defined(SYS_getrandom)
|
|
|
|
static int getrandom_works = 1; /* Be optimistic about our chances... */
|
|
|
|
|
|
|
|
/* getrandom() isn't as straightforward as getentropy(), and has
|
|
|
|
* no glibc wrapper.
|
|
|
|
*
|
|
|
|
* As far as I can tell from getrandom(2) and the source code, the
|
|
|
|
* requests we issue will always succeed (though it will block on the
|
|
|
|
* call if /dev/urandom isn't seeded yet), since we are NOT specifying
|
|
|
|
* GRND_NONBLOCK and the request is <= 256 bytes.
|
|
|
|
*
|
|
|
|
* The manpage is unclear on what happens if a signal interrupts the call
|
|
|
|
* while the request is blocked due to lack of entropy....
|
|
|
|
*
|
|
|
|
* We optimistically assume that getrandom() is available and functional
|
|
|
|
* because it is the way of the future, and 2 branch mispredicts pale in
|
|
|
|
* comparison to the overheads involved with failing to open
|
|
|
|
* /dev/srandom followed by opening and reading from /dev/urandom.
|
|
|
|
*/
|
|
|
|
if (PREDICT_LIKELY(getrandom_works)) {
|
|
|
|
long ret;
|
|
|
|
/* A flag of '0' here means to read from '/dev/urandom', and to
|
|
|
|
* block if insufficient entropy is available to service the
|
|
|
|
* request.
|
|
|
|
*/
|
|
|
|
const unsigned int flags = 0;
|
|
|
|
do {
|
|
|
|
ret = syscall(SYS_getrandom, out, out_len, flags);
|
|
|
|
} while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));
|
|
|
|
|
|
|
|
if (PREDICT_UNLIKELY(ret == -1)) {
|
|
|
|
/* LCOV_EXCL_START we can't actually make the syscall fail in testing. */
|
|
|
|
tor_assert(errno != EAGAIN);
|
|
|
|
tor_assert(errno != EINTR);
|
|
|
|
|
|
|
|
/* Useful log message for errno. */
|
|
|
|
if (errno == ENOSYS) {
|
|
|
|
log_notice(LD_CRYPTO, "Can't get entropy from getrandom()."
|
|
|
|
" You are running a version of Tor built to support"
|
|
|
|
" getrandom(), but the kernel doesn't implement this"
|
|
|
|
" function--probably because it is too old?"
|
|
|
|
" Trying fallback method instead.");
|
|
|
|
} else {
|
|
|
|
log_notice(LD_CRYPTO, "Can't get entropy from getrandom(): %s."
|
|
|
|
" Trying fallback method instead.",
|
|
|
|
strerror(errno));
|
|
|
|
}
|
|
|
|
|
|
|
|
getrandom_works = 0; /* Don't bother trying again. */
|
|
|
|
return -1;
|
|
|
|
/* LCOV_EXCL_STOP */
|
|
|
|
}
|
|
|
|
|
|
|
|
tor_assert(ret == (long)out_len);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1; /* getrandom() previously failed unexpectedly. */
|
|
|
|
#elif defined(HAVE_GETENTROPY)
|
|
|
|
/* getentropy() is what Linux's getrandom() wants to be when it grows up.
|
|
|
|
* the only gotcha is that requests are limited to 256 bytes.
|
|
|
|
*/
|
|
|
|
return getentropy(out, out_len);
|
|
|
|
#else
|
|
|
|
(void) out;
|
|
|
|
#endif /* defined(_WIN32) || ... */
|
|
|
|
|
|
|
|
/* This platform doesn't have a supported syscall based random. */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
* via the per-platform fallback mechanism, storing it into <b>out</b>.
|
|
|
|
* Return 0 on success, -1 on failure. A maximum request size of 256 bytes
|
|
|
|
* is imposed.
|
|
|
|
**/
|
|
|
|
static int
|
|
|
|
crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
|
|
|
|
{
|
|
|
|
#ifdef TOR_UNIT_TESTS
|
|
|
|
if (break_strongest_rng_fallback)
|
|
|
|
return -1;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
/* Windows exclusively uses crypto_strongest_rand_syscall(). */
|
|
|
|
(void)out;
|
|
|
|
(void)out_len;
|
|
|
|
return -1;
|
|
|
|
#else /* !(defined(_WIN32)) */
|
|
|
|
static const char *filenames[] = {
|
|
|
|
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
|
|
|
|
};
|
|
|
|
int fd, i;
|
|
|
|
size_t n;
|
|
|
|
|
|
|
|
for (i = 0; filenames[i]; ++i) {
|
|
|
|
log_debug(LD_FS, "Considering %s as entropy source", filenames[i]);
|
|
|
|
fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
|
|
|
|
if (fd<0) continue;
|
|
|
|
log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
|
|
|
|
n = read_all(fd, (char*)out, out_len, 0);
|
|
|
|
close(fd);
|
|
|
|
if (n != out_len) {
|
|
|
|
/* LCOV_EXCL_START
|
|
|
|
* We can't make /dev/foorandom actually fail. */
|
|
|
|
log_notice(LD_CRYPTO,
|
|
|
|
"Error reading from entropy source %s (read only %lu bytes).",
|
|
|
|
filenames[i],
|
|
|
|
(unsigned long)n);
|
|
|
|
return -1;
|
|
|
|
/* LCOV_EXCL_STOP */
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
#endif /* defined(_WIN32) */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
* storing it into <b>out</b>. Return 0 on success, -1 on failure. A maximum
|
|
|
|
* request size of 256 bytes is imposed.
|
|
|
|
**/
|
|
|
|
STATIC int
|
|
|
|
crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
|
|
|
|
{
|
|
|
|
static const size_t sanity_min_size = 16;
|
|
|
|
static const int max_attempts = 3;
|
|
|
|
tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
|
|
|
|
|
|
|
|
/* For buffers >= 16 bytes (128 bits), we sanity check the output by
|
|
|
|
* zero filling the buffer and ensuring that it actually was at least
|
|
|
|
* partially modified.
|
|
|
|
*
|
|
|
|
* Checking that any individual byte is non-zero seems like it would
|
|
|
|
* fail too often (p = out_len * 1/256) for comfort, but this is an
|
|
|
|
* "adjust according to taste" sort of check.
|
|
|
|
*/
|
|
|
|
memwipe(out, 0, out_len);
|
|
|
|
for (int i = 0; i < max_attempts; i++) {
|
|
|
|
/* Try to use the syscall/OS favored mechanism to get strong entropy. */
|
|
|
|
if (crypto_strongest_rand_syscall(out, out_len) != 0) {
|
|
|
|
/* Try to use the less-favored mechanism to get strong entropy. */
|
|
|
|
if (crypto_strongest_rand_fallback(out, out_len) != 0) {
|
|
|
|
/* Welp, we tried. Hopefully the calling code terminates the process
|
|
|
|
* since we're basically boned without good entropy.
|
|
|
|
*/
|
|
|
|
log_warn(LD_CRYPTO,
|
|
|
|
"Cannot get strong entropy: no entropy source found.");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* LCOV_EXCL_START
|
|
|
|
*
|
|
|
|
* We tried max_attempts times to fill a buffer >= 128 bits long,
|
|
|
|
* and each time it returned all '0's. Either the system entropy
|
|
|
|
* source is busted, or the user should go out and buy a ticket to
|
|
|
|
* every lottery on the planet.
|
|
|
|
*/
|
|
|
|
log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
/* LCOV_EXCL_STOP */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
|
|
|
|
* storing it into <b>out</b>.
|
|
|
|
**/
|
|
|
|
void
|
|
|
|
crypto_strongest_rand(uint8_t *out, size_t out_len)
|
|
|
|
{
|
|
|
|
#define DLEN SHA512_DIGEST_LENGTH
|
|
|
|
/* We're going to hash DLEN bytes from the system RNG together with some
|
|
|
|
* bytes from the openssl PRNG, in order to yield DLEN bytes.
|
|
|
|
*/
|
|
|
|
uint8_t inp[DLEN*2];
|
|
|
|
uint8_t tmp[DLEN];
|
|
|
|
tor_assert(out);
|
|
|
|
while (out_len) {
|
|
|
|
crypto_rand((char*) inp, DLEN);
|
|
|
|
if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
|
|
|
|
// LCOV_EXCL_START
|
|
|
|
log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
|
|
|
|
"important key. Exiting.");
|
|
|
|
/* Die with an assertion so we get a stack trace. */
|
|
|
|
tor_assert(0);
|
|
|
|
// LCOV_EXCL_STOP
|
|
|
|
}
|
|
|
|
if (out_len >= DLEN) {
|
|
|
|
SHA512(inp, sizeof(inp), out);
|
|
|
|
out += DLEN;
|
|
|
|
out_len -= DLEN;
|
|
|
|
} else {
|
|
|
|
SHA512(inp, sizeof(inp), tmp);
|
|
|
|
memcpy(out, tmp, out_len);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memwipe(tmp, 0, sizeof(tmp));
|
|
|
|
memwipe(inp, 0, sizeof(inp));
|
|
|
|
#undef DLEN
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Seed OpenSSL's random number generator with bytes from the operating
|
|
|
|
* system. Return 0 on success, -1 on failure.
|
|
|
|
**/
|
|
|
|
int
|
|
|
|
crypto_seed_rng(void)
|
|
|
|
{
|
|
|
|
int rand_poll_ok = 0, load_entropy_ok = 0;
|
|
|
|
uint8_t buf[ADD_ENTROPY];
|
|
|
|
|
|
|
|
/* OpenSSL has a RAND_poll function that knows about more kinds of
|
|
|
|
* entropy than we do. We'll try calling that, *and* calling our own entropy
|
|
|
|
* functions. If one succeeds, we'll accept the RNG as seeded. */
|
|
|
|
rand_poll_ok = RAND_poll();
|
|
|
|
if (rand_poll_ok == 0)
|
|
|
|
log_warn(LD_CRYPTO, "RAND_poll() failed."); // LCOV_EXCL_LINE
|
|
|
|
|
|
|
|
load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
|
|
|
|
if (load_entropy_ok) {
|
|
|
|
RAND_seed(buf, sizeof(buf));
|
|
|
|
}
|
|
|
|
|
|
|
|
memwipe(buf, 0, sizeof(buf));
|
|
|
|
|
|
|
|
if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
|
|
|
|
return 0;
|
|
|
|
else
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
|
|
|
|
* for unit tests.
|
|
|
|
*
|
|
|
|
* This function is not allowed to fail; if it would fail to generate strong
|
|
|
|
* entropy, it must terminate the process instead.
|
|
|
|
**/
|
|
|
|
MOCK_IMPL(void,
|
|
|
|
crypto_rand, (char *to, size_t n))
|
|
|
|
{
|
|
|
|
crypto_rand_unmocked(to, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Write <b>n</b> bytes of strong random data to <b>to</b>. Most callers
|
|
|
|
* will want crypto_rand instead.
|
|
|
|
*
|
|
|
|
* This function is not allowed to fail; if it would fail to generate strong
|
|
|
|
* entropy, it must terminate the process instead.
|
|
|
|
**/
|
|
|
|
void
|
|
|
|
crypto_rand_unmocked(char *to, size_t n)
|
|
|
|
{
|
|
|
|
int r;
|
|
|
|
if (n == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
tor_assert(n < INT_MAX);
|
|
|
|
tor_assert(to);
|
|
|
|
r = RAND_bytes((unsigned char*)to, (int)n);
|
|
|
|
/* We consider a PRNG failure non-survivable. Let's assert so that we get a
|
|
|
|
* stack trace about where it happened.
|
|
|
|
*/
|
|
|
|
tor_assert(r >= 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a pseudorandom integer, chosen uniformly from the values
|
|
|
|
* between 0 and <b>max</b>-1 inclusive. <b>max</b> must be between 1 and
|
|
|
|
* INT_MAX+1, inclusive.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
crypto_rand_int(unsigned int max)
|
|
|
|
{
|
|
|
|
unsigned int val;
|
|
|
|
unsigned int cutoff;
|
|
|
|
tor_assert(max <= ((unsigned int)INT_MAX)+1);
|
|
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
|
|
* range.
|
|
|
|
*/
|
|
|
|
cutoff = UINT_MAX - (UINT_MAX%max);
|
|
|
|
while (1) {
|
|
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
|
|
if (val < cutoff)
|
|
|
|
return val % max;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a pseudorandom integer, chosen uniformly from the values i such
|
|
|
|
* that min <= i < max.
|
|
|
|
*
|
|
|
|
* <b>min</b> MUST be in range [0, <b>max</b>).
|
|
|
|
* <b>max</b> MUST be in range (min, INT_MAX].
|
|
|
|
**/
|
|
|
|
int
|
|
|
|
crypto_rand_int_range(unsigned int min, unsigned int max)
|
|
|
|
{
|
|
|
|
tor_assert(min < max);
|
|
|
|
tor_assert(max <= INT_MAX);
|
|
|
|
|
|
|
|
/* The overflow is avoided here because crypto_rand_int() returns a value
|
|
|
|
* between 0 and (max - min) inclusive. */
|
|
|
|
return min + crypto_rand_int(max - min);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* As crypto_rand_int_range, but supports uint64_t.
|
|
|
|
**/
|
|
|
|
uint64_t
|
|
|
|
crypto_rand_uint64_range(uint64_t min, uint64_t max)
|
|
|
|
{
|
|
|
|
tor_assert(min < max);
|
|
|
|
return min + crypto_rand_uint64(max - min);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* As crypto_rand_int_range, but supports time_t.
|
|
|
|
**/
|
|
|
|
time_t
|
|
|
|
crypto_rand_time_range(time_t min, time_t max)
|
|
|
|
{
|
|
|
|
tor_assert(min < max);
|
|
|
|
return min + (time_t)crypto_rand_uint64(max - min);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a pseudorandom 64-bit integer, chosen uniformly from the values
|
|
|
|
* between 0 and <b>max</b>-1 inclusive.
|
|
|
|
**/
|
|
|
|
uint64_t
|
|
|
|
crypto_rand_uint64(uint64_t max)
|
|
|
|
{
|
|
|
|
uint64_t val;
|
|
|
|
uint64_t cutoff;
|
|
|
|
tor_assert(max < UINT64_MAX);
|
|
|
|
tor_assert(max > 0); /* don't div by 0 */
|
|
|
|
|
|
|
|
/* We ignore any values that are >= 'cutoff,' to avoid biasing the
|
|
|
|
* distribution with clipping at the upper end of unsigned int's
|
|
|
|
* range.
|
|
|
|
*/
|
|
|
|
cutoff = UINT64_MAX - (UINT64_MAX%max);
|
|
|
|
while (1) {
|
|
|
|
crypto_rand((char*)&val, sizeof(val));
|
|
|
|
if (val < cutoff)
|
|
|
|
return val % max;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a pseudorandom double d, chosen uniformly from the range
|
|
|
|
* 0.0 <= d < 1.0.
|
|
|
|
**/
|
|
|
|
double
|
|
|
|
crypto_rand_double(void)
|
|
|
|
{
|
|
|
|
/* We just use an unsigned int here; we don't really care about getting
|
|
|
|
* more than 32 bits of resolution */
|
|
|
|
unsigned int u;
|
|
|
|
crypto_rand((char*)&u, sizeof(u));
|
|
|
|
#if SIZEOF_INT == 4
|
|
|
|
#define UINT_MAX_AS_DOUBLE 4294967296.0
|
|
|
|
#elif SIZEOF_INT == 8
|
|
|
|
#define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19
|
|
|
|
#else
|
|
|
|
#error SIZEOF_INT is neither 4 nor 8
|
|
|
|
#endif /* SIZEOF_INT == 4 || ... */
|
|
|
|
return ((double)u) / UINT_MAX_AS_DOUBLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Generate and return a new random hostname starting with <b>prefix</b>,
|
|
|
|
* ending with <b>suffix</b>, and containing no fewer than
|
|
|
|
* <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
|
|
|
|
* characters. Does not check for failure.
|
|
|
|
*
|
|
|
|
* Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
|
|
|
|
**/
|
|
|
|
char *
|
|
|
|
crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
|
|
|
|
const char *suffix)
|
|
|
|
{
|
|
|
|
char *result, *rand_bytes;
|
|
|
|
int randlen, rand_bytes_len;
|
|
|
|
size_t resultlen, prefixlen;
|
|
|
|
|
|
|
|
if (max_rand_len > MAX_DNS_LABEL_SIZE)
|
|
|
|
max_rand_len = MAX_DNS_LABEL_SIZE;
|
|
|
|
if (min_rand_len > max_rand_len)
|
|
|
|
min_rand_len = max_rand_len;
|
|
|
|
|
|
|
|
randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1);
|
|
|
|
|
|
|
|
prefixlen = strlen(prefix);
|
|
|
|
resultlen = prefixlen + strlen(suffix) + randlen + 16;
|
|
|
|
|
|
|
|
rand_bytes_len = ((randlen*5)+7)/8;
|
|
|
|
if (rand_bytes_len % 5)
|
|
|
|
rand_bytes_len += 5 - (rand_bytes_len%5);
|
|
|
|
rand_bytes = tor_malloc(rand_bytes_len);
|
|
|
|
crypto_rand(rand_bytes, rand_bytes_len);
|
|
|
|
|
|
|
|
result = tor_malloc(resultlen);
|
|
|
|
memcpy(result, prefix, prefixlen);
|
|
|
|
base32_encode(result+prefixlen, resultlen-prefixlen,
|
|
|
|
rand_bytes, rand_bytes_len);
|
|
|
|
tor_free(rand_bytes);
|
|
|
|
strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen));
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return a randomly chosen element of <b>sl</b>; or NULL if <b>sl</b>
|
|
|
|
* is empty.
|
|
|
|
**/
|
|
|
|
void *
|
|
|
|
smartlist_choose(const smartlist_t *sl)
|
|
|
|
{
|
|
|
|
int len = smartlist_len(sl);
|
|
|
|
if (len)
|
|
|
|
return smartlist_get(sl,crypto_rand_int(len));
|
|
|
|
return NULL; /* no elements to choose from */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scramble the elements of <b>sl</b> into a random order.
|
|
|
|
**/
|
|
|
|
void
|
|
|
|
smartlist_shuffle(smartlist_t *sl)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
/* From the end of the list to the front, choose at random from the
|
|
|
|
positions we haven't looked at yet, and swap that position into the
|
|
|
|
current position. Remember to give "no swap" the same probability as
|
|
|
|
any other swap. */
|
|
|
|
for (i = smartlist_len(sl)-1; i > 0; --i) {
|
|
|
|
int j = crypto_rand_int(i+1);
|
|
|
|
smartlist_swap(sl, i, j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Make sure that openssl is using its default PRNG. Return 1 if we had to
|
|
|
|
* adjust it; 0 otherwise. */
|
|
|
|
int
|
|
|
|
crypto_force_rand_ssleay(void)
|
|
|
|
{
|
|
|
|
RAND_METHOD *default_method;
|
|
|
|
default_method = RAND_OpenSSL();
|
|
|
|
if (RAND_get_rand_method() != default_method) {
|
|
|
|
log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
|
|
|
|
"a replacement the OpenSSL RNG. Resetting it to the default "
|
|
|
|
"implementation.");
|
|
|
|
RAND_set_rand_method(default_method);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !defined(CRYPTO_RAND_PRIVATE) */
|
|
|
|
|