rust-lightning/fuzz/fuzz_targets/chanmon_fail_consistency.rs

782 lines
31 KiB
Rust

//! Test that monitor update failures don't get our channel state out of sync.
//! One of the biggest concern with the monitor update failure handling code is that messages
//! resent after monitor updating is restored are delivered out-of-order, resulting in
//! commitment_signed messages having "invalid signatures".
//! To test this we stand up a network of three nodes and read bytes from the fuzz input to denote
//! actions such as sending payments, handling events, or changing monitor update return values on
//! a per-node basis. This should allow it to find any cases where the ordering of actions results
//! in us getting out of sync with ourselves, and, assuming at least one of our recieve- or
//! send-side handling is correct, other peers. We consider it a failure if any action results in a
//! channel being force-closed.
//Uncomment this for libfuzzer builds:
//#![no_main]
extern crate bitcoin;
extern crate bitcoin_hashes;
extern crate lightning;
extern crate secp256k1;
use bitcoin::BitcoinHash;
use bitcoin::blockdata::block::BlockHeader;
use bitcoin::blockdata::transaction::{Transaction, TxOut};
use bitcoin::blockdata::script::{Builder, Script};
use bitcoin::blockdata::opcodes;
use bitcoin::network::constants::Network;
use bitcoin_hashes::Hash as TraitImport;
use bitcoin_hashes::hash160::Hash as Hash160;
use bitcoin_hashes::sha256::Hash as Sha256;
use bitcoin_hashes::sha256d::Hash as Sha256d;
use lightning::chain::chaininterface;
use lightning::chain::transaction::OutPoint;
use lightning::chain::chaininterface::{BroadcasterInterface,ConfirmationTarget,ChainListener,FeeEstimator,ChainWatchInterfaceUtil};
use lightning::chain::keysinterface::{ChannelKeys, KeysInterface};
use lightning::ln::channelmonitor;
use lightning::ln::channelmonitor::{ChannelMonitor, ChannelMonitorUpdateErr, HTLCUpdate};
use lightning::ln::channelmanager::{ChannelManager, PaymentHash, PaymentPreimage, ChannelManagerReadArgs};
use lightning::ln::router::{Route, RouteHop};
use lightning::ln::msgs::{CommitmentUpdate, ChannelMessageHandler, ErrorAction, LightningError, UpdateAddHTLC, LocalFeatures};
use lightning::util::events;
use lightning::util::logger::Logger;
use lightning::util::config::UserConfig;
use lightning::util::events::{EventsProvider, MessageSendEventsProvider};
use lightning::util::ser::{Readable, ReadableArgs, Writeable, Writer};
mod utils;
use utils::test_logger;
use secp256k1::key::{PublicKey,SecretKey};
use secp256k1::Secp256k1;
use std::mem;
use std::cmp::Ordering;
use std::collections::{HashSet, hash_map, HashMap};
use std::sync::{Arc,Mutex};
use std::sync::atomic;
use std::io::Cursor;
struct FuzzEstimator {}
impl FeeEstimator for FuzzEstimator {
fn get_est_sat_per_1000_weight(&self, _: ConfirmationTarget) -> u64 {
253
}
}
pub struct TestBroadcaster {}
impl BroadcasterInterface for TestBroadcaster {
fn broadcast_transaction(&self, _tx: &Transaction) { }
}
pub struct VecWriter(pub Vec<u8>);
impl Writer for VecWriter {
fn write_all(&mut self, buf: &[u8]) -> Result<(), ::std::io::Error> {
self.0.extend_from_slice(buf);
Ok(())
}
fn size_hint(&mut self, size: usize) {
self.0.reserve_exact(size);
}
}
static mut IN_RESTORE: bool = false;
pub struct TestChannelMonitor {
pub simple_monitor: Arc<channelmonitor::SimpleManyChannelMonitor<OutPoint>>,
pub update_ret: Mutex<Result<(), channelmonitor::ChannelMonitorUpdateErr>>,
pub latest_good_update: Mutex<HashMap<OutPoint, Vec<u8>>>,
pub latest_update_good: Mutex<HashMap<OutPoint, bool>>,
pub latest_updates_good_at_last_ser: Mutex<HashMap<OutPoint, bool>>,
pub should_update_manager: atomic::AtomicBool,
}
impl TestChannelMonitor {
pub fn new(chain_monitor: Arc<dyn chaininterface::ChainWatchInterface>, broadcaster: Arc<dyn chaininterface::BroadcasterInterface>, logger: Arc<dyn Logger>, feeest: Arc<dyn chaininterface::FeeEstimator>) -> Self {
Self {
simple_monitor: channelmonitor::SimpleManyChannelMonitor::new(chain_monitor, broadcaster, logger, feeest),
update_ret: Mutex::new(Ok(())),
latest_good_update: Mutex::new(HashMap::new()),
latest_update_good: Mutex::new(HashMap::new()),
latest_updates_good_at_last_ser: Mutex::new(HashMap::new()),
should_update_manager: atomic::AtomicBool::new(false),
}
}
}
impl channelmonitor::ManyChannelMonitor for TestChannelMonitor {
fn add_update_monitor(&self, funding_txo: OutPoint, monitor: channelmonitor::ChannelMonitor) -> Result<(), channelmonitor::ChannelMonitorUpdateErr> {
let ret = self.update_ret.lock().unwrap().clone();
if let Ok(()) = ret {
let mut ser = VecWriter(Vec::new());
monitor.write_for_disk(&mut ser).unwrap();
self.latest_good_update.lock().unwrap().insert(funding_txo, ser.0);
match self.latest_update_good.lock().unwrap().entry(funding_txo) {
hash_map::Entry::Vacant(e) => { e.insert(true); },
hash_map::Entry::Occupied(mut e) => {
if !e.get() && unsafe { IN_RESTORE } {
// Technically we can't consider an update to be "good" unless we're doing
// it in response to a test_restore_channel_monitor as the channel may
// still be waiting on such a call, so only set us to good if we're in the
// middle of a restore call.
e.insert(true);
}
},
}
self.should_update_manager.store(true, atomic::Ordering::Relaxed);
} else {
self.latest_update_good.lock().unwrap().insert(funding_txo, false);
}
assert!(self.simple_monitor.add_update_monitor(funding_txo, monitor).is_ok());
ret
}
fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate> {
return self.simple_monitor.fetch_pending_htlc_updated();
}
}
struct KeyProvider {
node_id: u8,
session_id: atomic::AtomicU8,
channel_id: atomic::AtomicU8,
}
impl KeysInterface for KeyProvider {
fn get_node_secret(&self) -> SecretKey {
SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, self.node_id]).unwrap()
}
fn get_destination_script(&self) -> Script {
let secp_ctx = Secp256k1::signing_only();
let channel_monitor_claim_key = SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, self.node_id]).unwrap();
let our_channel_monitor_claim_key_hash = Hash160::hash(&PublicKey::from_secret_key(&secp_ctx, &channel_monitor_claim_key).serialize());
Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_monitor_claim_key_hash[..]).into_script()
}
fn get_shutdown_pubkey(&self) -> PublicKey {
let secp_ctx = Secp256k1::signing_only();
PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, self.node_id]).unwrap())
}
fn get_channel_keys(&self, _inbound: bool) -> ChannelKeys {
ChannelKeys {
funding_key: SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, self.node_id]).unwrap(),
revocation_base_key: SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, self.node_id]).unwrap(),
payment_base_key: SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, self.node_id]).unwrap(),
delayed_payment_base_key: SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, self.node_id]).unwrap(),
htlc_base_key: SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, self.node_id]).unwrap(),
commitment_seed: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, self.node_id],
}
}
fn get_onion_rand(&self) -> (SecretKey, [u8; 32]) {
let id = self.session_id.fetch_add(1, atomic::Ordering::Relaxed);
(SecretKey::from_slice(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, id, 10, self.node_id]).unwrap(),
[0; 32])
}
fn get_channel_id(&self) -> [u8; 32] {
let id = self.channel_id.fetch_add(1, atomic::Ordering::Relaxed);
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, id, 11, self.node_id]
}
}
#[inline]
pub fn do_test(data: &[u8]) {
let fee_est = Arc::new(FuzzEstimator{});
let broadcast = Arc::new(TestBroadcaster{});
macro_rules! make_node {
($node_id: expr) => { {
let logger: Arc<dyn Logger> = Arc::new(test_logger::TestLogger::new($node_id.to_string()));
let watch = Arc::new(ChainWatchInterfaceUtil::new(Network::Bitcoin, Arc::clone(&logger)));
let monitor = Arc::new(TestChannelMonitor::new(watch.clone(), broadcast.clone(), logger.clone(), fee_est.clone()));
let keys_manager = Arc::new(KeyProvider { node_id: $node_id, session_id: atomic::AtomicU8::new(0), channel_id: atomic::AtomicU8::new(0) });
let mut config = UserConfig::default();
config.channel_options.fee_proportional_millionths = 0;
config.channel_options.announced_channel = true;
config.peer_channel_config_limits.min_dust_limit_satoshis = 0;
(ChannelManager::new(Network::Bitcoin, fee_est.clone(), monitor.clone(), broadcast.clone(), Arc::clone(&logger), keys_manager.clone(), config, 0).unwrap(),
monitor)
} }
}
macro_rules! reload_node {
($ser: expr, $node_id: expr, $old_monitors: expr) => { {
let logger: Arc<dyn Logger> = Arc::new(test_logger::TestLogger::new($node_id.to_string()));
let watch = Arc::new(ChainWatchInterfaceUtil::new(Network::Bitcoin, Arc::clone(&logger)));
let monitor = Arc::new(TestChannelMonitor::new(watch.clone(), broadcast.clone(), logger.clone(), fee_est.clone()));
let keys_manager = Arc::new(KeyProvider { node_id: $node_id, session_id: atomic::AtomicU8::new(0), channel_id: atomic::AtomicU8::new(0) });
let mut config = UserConfig::default();
config.channel_options.fee_proportional_millionths = 0;
config.channel_options.announced_channel = true;
config.peer_channel_config_limits.min_dust_limit_satoshis = 0;
let mut monitors = HashMap::new();
let mut old_monitors = $old_monitors.latest_good_update.lock().unwrap();
for (outpoint, monitor_ser) in old_monitors.drain() {
monitors.insert(outpoint, <(Sha256d, ChannelMonitor)>::read(&mut Cursor::new(&monitor_ser), Arc::clone(&logger)).expect("Failed to read monitor").1);
monitor.latest_good_update.lock().unwrap().insert(outpoint, monitor_ser);
}
let mut monitor_refs = HashMap::new();
for (outpoint, monitor) in monitors.iter() {
monitor_refs.insert(*outpoint, monitor);
}
let read_args = ChannelManagerReadArgs {
keys_manager,
fee_estimator: fee_est.clone(),
monitor: monitor.clone(),
tx_broadcaster: broadcast.clone(),
logger,
default_config: config,
channel_monitors: &monitor_refs,
};
let res = (<(Sha256d, ChannelManager)>::read(&mut Cursor::new(&$ser.0), read_args).expect("Failed to read manager").1, monitor);
for (_, was_good) in $old_monitors.latest_updates_good_at_last_ser.lock().unwrap().iter() {
if !was_good {
// If the last time we updated a monitor we didn't successfully update (and we
// have sense updated our serialized copy of the ChannelManager) we may
// force-close the channel on our counterparty cause we know we're missing
// something. Thus, we just return here since we can't continue to test.
return;
}
}
res
} }
}
let mut channel_txn = Vec::new();
macro_rules! make_channel {
($source: expr, $dest: expr, $chan_id: expr) => { {
$source.create_channel($dest.get_our_node_id(), 10000000, 42, 0).unwrap();
let open_channel = {
let events = $source.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
if let events::MessageSendEvent::SendOpenChannel { ref msg, .. } = events[0] {
msg.clone()
} else { panic!("Wrong event type"); }
};
$dest.handle_open_channel(&$source.get_our_node_id(), LocalFeatures::new(), &open_channel).unwrap();
let accept_channel = {
let events = $dest.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
if let events::MessageSendEvent::SendAcceptChannel { ref msg, .. } = events[0] {
msg.clone()
} else { panic!("Wrong event type"); }
};
$source.handle_accept_channel(&$dest.get_our_node_id(), LocalFeatures::new(), &accept_channel).unwrap();
{
let events = $source.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
if let events::Event::FundingGenerationReady { ref temporary_channel_id, ref channel_value_satoshis, ref output_script, .. } = events[0] {
let tx = Transaction { version: $chan_id, lock_time: 0, input: Vec::new(), output: vec![TxOut {
value: *channel_value_satoshis, script_pubkey: output_script.clone(),
}]};
let funding_output = OutPoint::new(tx.txid(), 0);
$source.funding_transaction_generated(&temporary_channel_id, funding_output);
channel_txn.push(tx);
} else { panic!("Wrong event type"); }
}
let funding_created = {
let events = $source.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
if let events::MessageSendEvent::SendFundingCreated { ref msg, .. } = events[0] {
msg.clone()
} else { panic!("Wrong event type"); }
};
$dest.handle_funding_created(&$source.get_our_node_id(), &funding_created).unwrap();
let funding_signed = {
let events = $dest.get_and_clear_pending_msg_events();
assert_eq!(events.len(), 1);
if let events::MessageSendEvent::SendFundingSigned { ref msg, .. } = events[0] {
msg.clone()
} else { panic!("Wrong event type"); }
};
$source.handle_funding_signed(&$dest.get_our_node_id(), &funding_signed).unwrap();
{
let events = $source.get_and_clear_pending_events();
assert_eq!(events.len(), 1);
if let events::Event::FundingBroadcastSafe { .. } = events[0] {
} else { panic!("Wrong event type"); }
}
} }
}
macro_rules! confirm_txn {
($node: expr) => { {
let mut header = BlockHeader { version: 0x20000000, prev_blockhash: Default::default(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
let mut txn = Vec::with_capacity(channel_txn.len());
let mut posn = Vec::with_capacity(channel_txn.len());
for i in 0..channel_txn.len() {
txn.push(&channel_txn[i]);
posn.push(i as u32 + 1);
}
$node.block_connected(&header, 1, &txn, &posn);
for i in 2..100 {
header = BlockHeader { version: 0x20000000, prev_blockhash: header.bitcoin_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
$node.block_connected(&header, i, &Vec::new(), &[0; 0]);
}
} }
}
macro_rules! lock_fundings {
($nodes: expr) => { {
let mut node_events = Vec::new();
for node in $nodes.iter() {
node_events.push(node.get_and_clear_pending_msg_events());
}
for (idx, node_event) in node_events.iter().enumerate() {
for event in node_event {
if let events::MessageSendEvent::SendFundingLocked { ref node_id, ref msg } = event {
for node in $nodes.iter() {
if node.get_our_node_id() == *node_id {
node.handle_funding_locked(&$nodes[idx].get_our_node_id(), msg).unwrap();
}
}
} else { panic!("Wrong event type"); }
}
}
for node in $nodes.iter() {
let events = node.get_and_clear_pending_msg_events();
for event in events {
if let events::MessageSendEvent::SendAnnouncementSignatures { .. } = event {
} else { panic!("Wrong event type"); }
}
}
} }
}
// 3 nodes is enough to hit all the possible cases, notably unknown-source-unknown-dest
// forwarding.
let (mut node_a, mut monitor_a) = make_node!(0);
let (mut node_b, mut monitor_b) = make_node!(1);
let (mut node_c, mut monitor_c) = make_node!(2);
let mut nodes = [node_a, node_b, node_c];
make_channel!(nodes[0], nodes[1], 0);
make_channel!(nodes[1], nodes[2], 1);
for node in nodes.iter() {
confirm_txn!(node);
}
lock_fundings!(nodes);
let chan_a = nodes[0].list_usable_channels()[0].short_channel_id.unwrap();
let chan_b = nodes[2].list_usable_channels()[0].short_channel_id.unwrap();
let mut payment_id = 0;
let mut chan_a_disconnected = false;
let mut chan_b_disconnected = false;
let mut ba_events = Vec::new();
let mut bc_events = Vec::new();
let mut node_a_ser = VecWriter(Vec::new());
nodes[0].write(&mut node_a_ser).unwrap();
let mut node_b_ser = VecWriter(Vec::new());
nodes[1].write(&mut node_b_ser).unwrap();
let mut node_c_ser = VecWriter(Vec::new());
nodes[2].write(&mut node_c_ser).unwrap();
macro_rules! test_err {
($res: expr) => {
match $res {
Ok(()) => {},
Err(LightningError { action: ErrorAction::IgnoreError, .. }) => { },
_ => { $res.unwrap() },
}
}
}
macro_rules! test_return {
() => { {
assert_eq!(nodes[0].list_channels().len(), 1);
assert_eq!(nodes[1].list_channels().len(), 2);
assert_eq!(nodes[2].list_channels().len(), 1);
return;
} }
}
let mut read_pos = 0;
macro_rules! get_slice {
($len: expr) => {
{
let slice_len = $len as usize;
if data.len() < read_pos + slice_len {
test_return!();
}
read_pos += slice_len;
&data[read_pos - slice_len..read_pos]
}
}
}
loop {
macro_rules! send_payment {
($source: expr, $dest: expr) => { {
let payment_hash = Sha256::hash(&[payment_id; 1]);
payment_id = payment_id.wrapping_add(1);
if let Err(_) = $source.send_payment(Route {
hops: vec![RouteHop {
pubkey: $dest.0.get_our_node_id(),
short_channel_id: $dest.1,
fee_msat: 5000000,
cltv_expiry_delta: 200,
}],
}, PaymentHash(payment_hash.into_inner())) {
// Probably ran out of funds
test_return!();
}
} };
($source: expr, $middle: expr, $dest: expr) => { {
let payment_hash = Sha256::hash(&[payment_id; 1]);
payment_id = payment_id.wrapping_add(1);
if let Err(_) = $source.send_payment(Route {
hops: vec![RouteHop {
pubkey: $middle.0.get_our_node_id(),
short_channel_id: $middle.1,
fee_msat: 50000,
cltv_expiry_delta: 100,
},RouteHop {
pubkey: $dest.0.get_our_node_id(),
short_channel_id: $dest.1,
fee_msat: 5000000,
cltv_expiry_delta: 200,
}],
}, PaymentHash(payment_hash.into_inner())) {
// Probably ran out of funds
test_return!();
}
} }
}
macro_rules! process_msg_events {
($node: expr, $corrupt_forward: expr) => { {
let events = if $node == 1 {
let mut new_events = Vec::new();
mem::swap(&mut new_events, &mut ba_events);
new_events.extend_from_slice(&bc_events[..]);
bc_events.clear();
new_events
} else { Vec::new() };
for event in events.iter().chain(nodes[$node].get_and_clear_pending_msg_events().iter()) {
match event {
events::MessageSendEvent::UpdateHTLCs { ref node_id, updates: CommitmentUpdate { ref update_add_htlcs, ref update_fail_htlcs, ref update_fulfill_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
for dest in nodes.iter() {
if dest.get_our_node_id() == *node_id {
assert!(update_fee.is_none());
for update_add in update_add_htlcs {
if !$corrupt_forward {
test_err!(dest.handle_update_add_htlc(&nodes[$node].get_our_node_id(), &update_add));
} else {
// Corrupt the update_add_htlc message so that its HMAC
// check will fail and we generate a
// update_fail_malformed_htlc instead of an
// update_fail_htlc as we do when we reject a payment.
let mut msg_ser = update_add.encode();
msg_ser[1000] ^= 0xff;
let new_msg = UpdateAddHTLC::read(&mut Cursor::new(&msg_ser)).unwrap();
test_err!(dest.handle_update_add_htlc(&nodes[$node].get_our_node_id(), &new_msg));
}
}
for update_fulfill in update_fulfill_htlcs {
test_err!(dest.handle_update_fulfill_htlc(&nodes[$node].get_our_node_id(), &update_fulfill));
}
for update_fail in update_fail_htlcs {
test_err!(dest.handle_update_fail_htlc(&nodes[$node].get_our_node_id(), &update_fail));
}
for update_fail_malformed in update_fail_malformed_htlcs {
test_err!(dest.handle_update_fail_malformed_htlc(&nodes[$node].get_our_node_id(), &update_fail_malformed));
}
test_err!(dest.handle_commitment_signed(&nodes[$node].get_our_node_id(), &commitment_signed));
}
}
},
events::MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
for dest in nodes.iter() {
if dest.get_our_node_id() == *node_id {
test_err!(dest.handle_revoke_and_ack(&nodes[$node].get_our_node_id(), msg));
}
}
},
events::MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
for dest in nodes.iter() {
if dest.get_our_node_id() == *node_id {
test_err!(dest.handle_channel_reestablish(&nodes[$node].get_our_node_id(), msg));
}
}
},
events::MessageSendEvent::SendFundingLocked { .. } => {
// Can be generated as a reestablish response
},
events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {
// Can be generated due to a payment forward being rejected due to a
// channel having previously failed a monitor update
},
_ => panic!("Unhandled message event"),
}
}
} }
}
macro_rules! drain_msg_events_on_disconnect {
($counterparty_id: expr) => { {
if $counterparty_id == 0 {
for event in nodes[0].get_and_clear_pending_msg_events() {
match event {
events::MessageSendEvent::UpdateHTLCs { .. } => {},
events::MessageSendEvent::SendRevokeAndACK { .. } => {},
events::MessageSendEvent::SendChannelReestablish { .. } => {},
events::MessageSendEvent::SendFundingLocked { .. } => {},
events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {},
_ => panic!("Unhandled message event"),
}
}
ba_events.clear();
} else {
for event in nodes[2].get_and_clear_pending_msg_events() {
match event {
events::MessageSendEvent::UpdateHTLCs { .. } => {},
events::MessageSendEvent::SendRevokeAndACK { .. } => {},
events::MessageSendEvent::SendChannelReestablish { .. } => {},
events::MessageSendEvent::SendFundingLocked { .. } => {},
events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => {},
_ => panic!("Unhandled message event"),
}
}
bc_events.clear();
}
let mut events = nodes[1].get_and_clear_pending_msg_events();
let drop_node_id = if $counterparty_id == 0 { nodes[0].get_our_node_id() } else { nodes[2].get_our_node_id() };
let msg_sink = if $counterparty_id == 0 { &mut bc_events } else { &mut ba_events };
for event in events.drain(..) {
let push = match event {
events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => {
if *node_id != drop_node_id { true } else { false }
},
events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => {
if *node_id != drop_node_id { true } else { false }
},
events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => {
if *node_id != drop_node_id { true } else { false }
},
events::MessageSendEvent::SendFundingLocked { .. } => false,
events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => false,
_ => panic!("Unhandled message event"),
};
if push { msg_sink.push(event); }
}
} }
}
macro_rules! process_events {
($node: expr, $fail: expr) => { {
// In case we get 256 payments we may have a hash collision, resulting in the
// second claim/fail call not finding the duplicate-hash HTLC, so we have to
// deduplicate the calls here.
let mut claim_set = HashSet::new();
let mut events = nodes[$node].get_and_clear_pending_events();
// Sort events so that PendingHTLCsForwardable get processed last. This avoids a
// case where we first process a PendingHTLCsForwardable, then claim/fail on a
// PaymentReceived, claiming/failing two HTLCs, but leaving a just-generated
// PaymentReceived event for the second HTLC in our pending_events (and breaking
// our claim_set deduplication).
events.sort_by(|a, b| {
if let events::Event::PaymentReceived { .. } = a {
if let events::Event::PendingHTLCsForwardable { .. } = b {
Ordering::Less
} else { Ordering::Equal }
} else if let events::Event::PendingHTLCsForwardable { .. } = a {
if let events::Event::PaymentReceived { .. } = b {
Ordering::Greater
} else { Ordering::Equal }
} else { Ordering::Equal }
});
for event in events.drain(..) {
match event {
events::Event::PaymentReceived { payment_hash, .. } => {
if claim_set.insert(payment_hash.0) {
if $fail {
assert!(nodes[$node].fail_htlc_backwards(&payment_hash));
} else {
assert!(nodes[$node].claim_funds(PaymentPreimage(payment_hash.0), 5_000_000));
}
}
},
events::Event::PaymentSent { .. } => {},
events::Event::PaymentFailed { .. } => {},
events::Event::PendingHTLCsForwardable { .. } => {
nodes[$node].process_pending_htlc_forwards();
},
_ => panic!("Unhandled event"),
}
}
} }
}
match get_slice!(1)[0] {
0x00 => *monitor_a.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure),
0x01 => *monitor_b.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure),
0x02 => *monitor_c.update_ret.lock().unwrap() = Err(ChannelMonitorUpdateErr::TemporaryFailure),
0x03 => *monitor_a.update_ret.lock().unwrap() = Ok(()),
0x04 => *monitor_b.update_ret.lock().unwrap() = Ok(()),
0x05 => *monitor_c.update_ret.lock().unwrap() = Ok(()),
0x06 => { unsafe { IN_RESTORE = true }; nodes[0].test_restore_channel_monitor(); unsafe { IN_RESTORE = false }; },
0x07 => { unsafe { IN_RESTORE = true }; nodes[1].test_restore_channel_monitor(); unsafe { IN_RESTORE = false }; },
0x08 => { unsafe { IN_RESTORE = true }; nodes[2].test_restore_channel_monitor(); unsafe { IN_RESTORE = false }; },
0x09 => send_payment!(nodes[0], (&nodes[1], chan_a)),
0x0a => send_payment!(nodes[1], (&nodes[0], chan_a)),
0x0b => send_payment!(nodes[1], (&nodes[2], chan_b)),
0x0c => send_payment!(nodes[2], (&nodes[1], chan_b)),
0x0d => send_payment!(nodes[0], (&nodes[1], chan_a), (&nodes[2], chan_b)),
0x0e => send_payment!(nodes[2], (&nodes[1], chan_b), (&nodes[0], chan_a)),
0x0f => {
if !chan_a_disconnected {
nodes[0].peer_disconnected(&nodes[1].get_our_node_id(), false);
nodes[1].peer_disconnected(&nodes[0].get_our_node_id(), false);
chan_a_disconnected = true;
drain_msg_events_on_disconnect!(0);
}
},
0x10 => {
if !chan_b_disconnected {
nodes[1].peer_disconnected(&nodes[2].get_our_node_id(), false);
nodes[2].peer_disconnected(&nodes[1].get_our_node_id(), false);
chan_b_disconnected = true;
drain_msg_events_on_disconnect!(2);
}
},
0x11 => {
if chan_a_disconnected {
nodes[0].peer_connected(&nodes[1].get_our_node_id());
nodes[1].peer_connected(&nodes[0].get_our_node_id());
chan_a_disconnected = false;
}
},
0x12 => {
if chan_b_disconnected {
nodes[1].peer_connected(&nodes[2].get_our_node_id());
nodes[2].peer_connected(&nodes[1].get_our_node_id());
chan_b_disconnected = false;
}
},
0x13 => process_msg_events!(0, true),
0x14 => process_msg_events!(0, false),
0x15 => process_events!(0, true),
0x16 => process_events!(0, false),
0x17 => process_msg_events!(1, true),
0x18 => process_msg_events!(1, false),
0x19 => process_events!(1, true),
0x1a => process_events!(1, false),
0x1b => process_msg_events!(2, true),
0x1c => process_msg_events!(2, false),
0x1d => process_events!(2, true),
0x1e => process_events!(2, false),
0x1f => {
if !chan_a_disconnected {
nodes[1].peer_disconnected(&nodes[0].get_our_node_id(), false);
chan_a_disconnected = true;
drain_msg_events_on_disconnect!(0);
}
let (new_node_a, new_monitor_a) = reload_node!(node_a_ser, 0, monitor_a);
node_a = Arc::new(new_node_a);
nodes[0] = node_a.clone();
monitor_a = new_monitor_a;
},
0x20 => {
if !chan_a_disconnected {
nodes[0].peer_disconnected(&nodes[1].get_our_node_id(), false);
chan_a_disconnected = true;
nodes[0].get_and_clear_pending_msg_events();
ba_events.clear();
}
if !chan_b_disconnected {
nodes[2].peer_disconnected(&nodes[1].get_our_node_id(), false);
chan_b_disconnected = true;
nodes[2].get_and_clear_pending_msg_events();
bc_events.clear();
}
let (new_node_b, new_monitor_b) = reload_node!(node_b_ser, 1, monitor_b);
node_b = Arc::new(new_node_b);
nodes[1] = node_b.clone();
monitor_b = new_monitor_b;
},
0x21 => {
if !chan_b_disconnected {
nodes[1].peer_disconnected(&nodes[2].get_our_node_id(), false);
chan_b_disconnected = true;
drain_msg_events_on_disconnect!(2);
}
let (new_node_c, new_monitor_c) = reload_node!(node_c_ser, 2, monitor_c);
node_c = Arc::new(new_node_c);
nodes[2] = node_c.clone();
monitor_c = new_monitor_c;
},
_ => test_return!(),
}
if monitor_a.should_update_manager.load(atomic::Ordering::Relaxed) {
node_a_ser.0.clear();
nodes[0].write(&mut node_a_ser).unwrap();
monitor_a.should_update_manager.store(false, atomic::Ordering::Relaxed);
*monitor_a.latest_updates_good_at_last_ser.lock().unwrap() = monitor_a.latest_update_good.lock().unwrap().clone();
}
if monitor_b.should_update_manager.load(atomic::Ordering::Relaxed) {
node_b_ser.0.clear();
nodes[1].write(&mut node_b_ser).unwrap();
monitor_b.should_update_manager.store(false, atomic::Ordering::Relaxed);
*monitor_b.latest_updates_good_at_last_ser.lock().unwrap() = monitor_b.latest_update_good.lock().unwrap().clone();
}
if monitor_c.should_update_manager.load(atomic::Ordering::Relaxed) {
node_c_ser.0.clear();
nodes[2].write(&mut node_c_ser).unwrap();
monitor_c.should_update_manager.store(false, atomic::Ordering::Relaxed);
*monitor_c.latest_updates_good_at_last_ser.lock().unwrap() = monitor_c.latest_update_good.lock().unwrap().clone();
}
}
}
#[cfg(feature = "afl")]
#[macro_use] extern crate afl;
#[cfg(feature = "afl")]
fn main() {
fuzz!(|data| {
do_test(data);
});
}
#[cfg(feature = "honggfuzz")]
#[macro_use] extern crate honggfuzz;
#[cfg(feature = "honggfuzz")]
fn main() {
loop {
fuzz!(|data| {
do_test(data);
});
}
}
#[cfg(feature = "libfuzzer_fuzz")]
#[macro_use] extern crate libfuzzer_sys;
#[cfg(feature = "libfuzzer_fuzz")]
fuzz_target!(|data: &[u8]| {
do_test(data);
});
extern crate hex;
#[cfg(test)]
mod tests {
#[test]
fn duplicate_crash() {
super::do_test(&::hex::decode("00").unwrap());
}
}